APPLICATION NOTES AND SELECTION GUIDE

ANWENDUNGSHINWEISE UND BERECHNUNGSBEISPIELE

GENERAL REMARKS 6	ALLGEMEINER TEIL
FIELDS OF APPLICATION	ANWENDUNGSBEREICH 6 INNERER AUFBAU 7 Dielektrikum – Füllstoffe BETRIEBSSICHERHEIT 8 Selbstheilendes Dielektrikum – Berührungssicherheit – Schutz gegen Überlastung BEGRIFFE UND AUSWAHLKRITERIEN 10
SELECTION GUIDE	BERECHNUNGSBEISPIELE 21
INTRODUCTION 22 Capacitor for an AC application 23 Capacitor for a DC application 27 AC Filter capacitor 30	EINFÜHRUNG
ANNEX	ANHANG
MOUNTING AND OPERATING INSTRUCTIONS	VORSCHRIFTEN ZU EINBAU UND BETRIEB
ZVEI-SAFETY DATA SHEET	ZVEI- SICHERHEITSHINWEISE
CERTIFICATES	ZERTIFIKATE
PACKING DETAILS	VERPACKUNGSDATEN 45
CONVERSION CHARTS 46	UMRECHNUNGSTABELLEN

FIELDS OF APPLICATION ANWENDUNGSBEREICH

Capacitors for power electronics can be used for a wide variety of applications, even where extremely non-sinusoidal voltages and pulsed currents are present. Both AC and DC capacitors are available. AC capacitors are periodically recharged during operation, DC capacitors are periodically charged and discharged without recharge.

see Selection Guide pg. 20 Berechnungsbeispiel S. 20 AC CAPACITORS serve as damping or snubber capacitors connected in series with a resistor, and are designed for the damping of undesirable voltage spikes caused by the so-called carrier storage effect during the switching of power semiconductors. When applied as commutation capacitors, they are switched in parallel to a thyristor and designed to quench its conductive state. Since commutating capacitors are periodically and abruptly recharged, the peak current will substantially exceed the rms value.

see Selection Guide pg. 26 Berechnungsbeispiel S. 26 Further, AC capacitors are used in low-detuned or close-tuned **filter circuits** for filtering or absorbing harmonics. As **pulse discharge capacitors**, they are useful in applications with reversing voltages, e.g. in magnetizing equipment.

Series E62, E62-3ph,E12, E33 have been designed for AC use. Further, specially adapted capacitors from the E51, E53, E56 and E59 ranges are available for AC applications on request.

see Selection Guide pg. 23 Berechnungsbeispiel The scope of application for DC CAPACITORS is similarly diverse:

Smoothing capacitors serve for the reduction of the AC component of fluctuating DC voltage, e.g., in power supplies in radio and television technology (transmitters,) high-voltage testing equipment, DC controllers, measurement and control technology, cascaded circuits for generation of high DC voltage a.m.o. Supporting capacitors, DC-Filter or buffer circuit capacitors are used for energy storage in intermediate DC circuits, e.g. in frequency converters for poly-phase drives, transistor and thyristor converters. They must be able to absorb and release very high currents within short periods, the peak value of the current being substantially greater than the rms value.

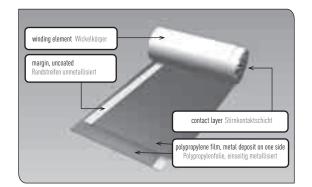
Surge (Pulse) discharge capacitors are also capable of supplying or absorbing extreme short-time current surges. They are usually operated in discharge applications with non-reversing voltages, and at low repetition frequencies, e.g. in laser technology and lightning generators.

Series **E63**, **E50**, **E51**, **E56**, **E59** but also **E62**, **E65** and **E53** can be used for DC applications.

Kondensatoren für die Leistungselektronik sind universell einsetzbare Kondensatoren, die auch mit stark von der Sinusform abweichenden Spannungen und mit impulsförmigen Strömen betrieben werden können. Man unterscheidet Wechselspannungs- und Gleichspannungskondensatoren. Wechselspannungskondensatoren werden im Betrieb periodisch umgeladen, Gleichspannungskondensatoren werden periodisch aufgeladen und entladen, wobei keine Umladung erfolgt.

WECHSELSPANNUNGSKONDENSATOREN dienen unter anderem als Bedämpfungskondensatoren, in Reihe mit einem ohmschen Widerstand, zur Dämpfung von Spannungsspitzen, die beim Abschalten von Leistungshalb-leitern durch den sogenannten Trägerstaueffekt entstehen. In der Anwendung als Kommutierungskondensatoren werden sie zum Löschen des leitenden Zustandes eines Thyristors benutzt, indem sie durch Parallel-schalten zum Thyristor den Strom kurzzeitig übernehmen. Bei der periodischen stoßartigen Umladung können die Stromscheitelwerte dabei wesentlich höher als die Effektivwerte sein.

Desweiteren finden Wechselspannungskondensatoren Anwendung in abgestimmten oder verstimmten Filterkreisen zur Filterung oder gezielten Absaugung von Oberwellen. Als Stoßentladekondensatoren werden sie in Anwendungen mit durchschwingender Spannungskurve eingesetzt, z.B. in Magnetisierungsanlagen.


Für Wechselspannungsanwendungen sind v.a. die Reihen **E62**, **E62-3ph**, **E12**, **E33** ausgelegt. Speziell angepasste Ausführungen in den Reihen E51, E53, E56 und E59 sind auf Anfrage ebenfalls erhältlich.

Der Anwendungsbereich für GLEICHSPANNUNGSKONDENSATOREN ist ebenso weit gefächert: Als Glättungskondensatoren dienen sie der Verringerung des Wechselspannungsanteils pulsierender Gleichspannung, zum Beispiel in Stromversorgungen der Rundfunk- und Fernsehtechnik (Sender), Hochspannungs-Prüfgeräten, Gleichspannungsreglern, in der Mess- und Regeltechnik, in Kaskadenschaltungen zur Erzeugung hoher Gleichspannung, u.v.a. Stütz-, Gleichspannungsfilter- oder Zwischenkreis-kondensatoren werden eingesetzt als Energiespeicher in Gleichspannungszwischenkreisen, z.B. in Frequenzumrichtern von Drehstromantrieben, Transistor- und Thyristorumrichtern. Dabei müssen sie kurzzeitig sehr hohe Ströme abgeben und aufnehmen können.

Auch **Stoßentladekondensatoren** sind in der Lage, kurzzeitig starke Stoßströme abzugeben; sie werden vor allem bei Entladevorgängen mit nicht durchschwingendem Spannungsverlauf eingesetzt, und meist mit niedrigen Folgefrequenzen betrieben, z.B in der Lasertechnik und in Blitzgeneratoren.

Die Typenreihen E63, E50, E51, E56, E59 sowie E62, E65 und E53 sind für den Einsatz in Gleichspannungsanwendungen geeignet.

INTERNAL CONSTRUCTION **INNERER AUFBAU**

Dielectric

MKP-type capacitors are based on a low-loss dielectric formed by pure polypropylene film. A thin self-healing mixture of zinc and aluminium is metallized directly on one side of the PP-film under vacuum. In some cases, additional unmetallized layers are added between the metallized ones.

The plastic film is wound into stable cylindrical windings on the most modern automated equipment. The ends of the capacitor windings are contacted by spraying with a metal contact layer, facilitating a high current load and ensuring a low-inductance connection between the terminals and windings.

Our long-term experience as well as on-going research and improvements in this technology ensure the excellent self-healing characteristics of the dielectric and a long operating life of our capacitors.

The link between PP-film and zinc contact layer is highly stressed during high surge or rms current and therefore considered very critical for operating life and reliability of the capacitor. By cutting the film in a wavelike manner, our well-proven SineCut™- technology increases the contact surface between film and zinc layer and reduces this strain substantially.

Impregnants

The use of filling materials in capacitors is necessary in order to insulate the capacitor electrodes from oxygen, humidity, and other environmental interference. Without such insulation, the metal coating would corrode, an increasing number of partial discharges would occur, the capacitor would lose more and more of its capacitance, and suffer increased dielectric losses and a reduced operating life.

Therefore, an elaborate vacuum-drying procedure is initiated immediately after insertion of the winding elements into the capacitor case and biologically degradable plant oil, solid PUR resin or inert insulation gas are introduced. That protects the winding from environmental influence and provides an extended life-expectancy and stable capacitance.

Dielektrikum

Kondensatoren in MKP-Technologie basieren auf einem verlustarmen Dielektrikum aus reiner Polypropylenfolie. Eine dünne, selbstheilende Mischung aus Zink und Aluminium wird unter Vakuum direkt auf eine Seite der Polypropylenfolie aufgedampft. Bei zweilagigem Aufbau werden zwischen den metallisierten Bahnen zusätzlich unmetallisierte Bahnen angeordnet.

Die auf modernsten Maschinen hergestellten einphasigen Wickel werden an beiden Enden durch Aufsprühen einer Metallschicht kontaktiert. Hierdurch wird eine hohe Strombelastbarkeit sowie eine niederinduktive Verbindung zwischen den Anschlüssen und den Wickeln garantiert.

Unsere langjährigen Erfahrungen, ständige Forschungen und eine stetige Weiterentwicklung dieser Technologie sind Grundlage für die lange Betriebsdauer und die guten Selbstheileigenschaften unserer Kondensatoren.

Die Verbindung zwischen Folie und Stirnkontaktschicht wird bei hohen Stoßund Effektivströmen außerordentlich hoch belastet und gilt als besonders kritisch für Lebensdauer und Funktionssicherheit des Kondensators. Diese relative Belastung reduzieren wir durch unser bewährtes SineCut™-Verfahren, indem wir durch wellenförmiges Schneiden der Folienbahnen die Auflagefläche der Stirnkontaktschicht deutlich vergrößern.

Füllstoffe

Die Verwendung von Füllstoffen ist unerlässlich, um die Elektroden des Kondensators vor Sauerstoff, Feuchtigkeit und anderen Umwelteinflüssen abzuschirmen. Ohne eine solche Isolation würden die Metallbeläge korrodieren und die Anzahl von Teilentladungen würde zunehmen. Ständige Kapazitätsverluste, steigende dielektrische Verluste und eine verkürzte Lebensdauer wären die Folge.

Nach dem Einbau der Wickel in das Kondensatorgehäuse und sorgfältiger Vakuumtrocknung wird dieses daher mit biologisch abbaubarem Pflanzenöl bzw. aushärtendem Polyurethanharz oder mit neutralem Isoliergas aufgefüllt. Das schützt den Wickel vor Umwelteinflüssen und verhilft dem Kondensator zu einer langen Lebensdauer und stabiler Kapazität.

Protection Against Overvoltages and Short Circuits: Self-Healing Dielectric

All dielectric structures used in our capacitors are "self-healing": In the event of a voltage breakdown the metal layers around the breakdown channel are evaporated by the temperature of the electric arc that forms between the electrodes. They are removed within a few microseconds and pushed apart by the pressure generated in the centre of the breakdown spot.

An insulation area is formed which is reliably resistive and voltage proof for all operating requirements of the capacitor. The capacitor remains fully functional during and after the breakdown.

Schutz gegen Überspannungen und Kurzschlüsse: Selbstheilendes Dielektrikum

Alle in unseren Kondensatoren eingesetzten dielektrischen Strukturen sind selbstheilend. Im Falle eines Kurzschlusses (Spannungsdurchschlag) verdampfen die Metallbeläge um den Durchschlagspunkt herum aufgrund der Temperatur des Lichtbogens, der sich zwischen den Elektroden bildet. Innerhalb weniger Mikrosekunden wird der Metalldampf durch den beim Durchschlag entstehenden Überdruck vom Zentrum des Durchschlages weggedrückt. Auf diese Weise bildet sich eine belagfreie Zone rings um den Durchschlagspunkt, wodurch dieser vollständig isoliert wird. Der Kondensator bleibt während und nach dem Durchschlag voll funktionsfähig.

Self-healing breakdown Selbst heilender Durchschlag

Protection Against Accidental Contact

All capacitors are checked by routine test: voltage test between shorted terminations and case in accordance with IEC 61071. Accessible capacitors must be earthed at the bottom stud or with an additional earthing clamp.

CAPA**GRIP**™

The CAPA**GRIP**™ terminal block of designs K, L and M (1/3) is rated IP20, i.e. it is protected against accidental finger contact with live parts. All other capacitors are not protected against accidental contact.

Berührungssicherheit

Alle Kondensatoren werden 100%ig der Isolationsprüfung zwischen kurzgeschlossenen Anschlüssen und Gehäuse mit einer Prüfspannung unterzogen, welche mindestens den Werten nach IEC 61071 entspricht. Trotzdem sind zugängliche Kondensatoren mittels des Bodenbolzens oder einer Metallschelle zu erden.

Das CAPA**GRIP**[™] Anschlusselement der Bauformen K, L und M (1/3) weist einen Schutzgrad IP20 auf, d.h. es ist vor Berührung mit dem Finger geschützt, so dass spannungsführende Teile nicht berührt werden können. Alle anderen Anschlussarten sind nicht berührungsgeschützt.

Protection Against Overvoltages and External Short Circuits

As shown above, the capacitors are self-healing and regenerate themselves after breakdowns of the dielectric. For voltages within the permitted testing and operating maximum the capacitors are overvoltage-proof. They are also proof against external short circuits as far as the resulting surge discharges do not exceed the specified current limits $\{I_s\}$.

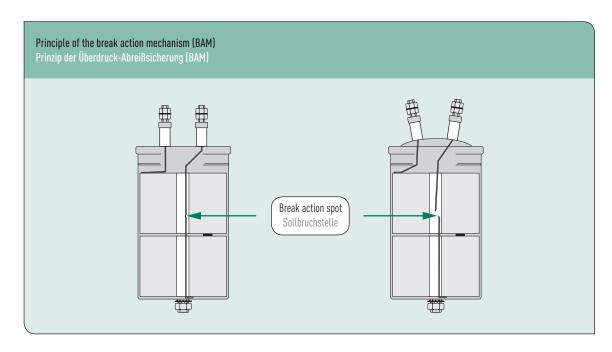
1.1 × U _N	30% of the service period der Betriebszeit
1.15 × U _N	30 min/d
1.2 × U _N	5 min/d
1.3 × U _N	1 min/d
1.5 × U _N	100 ms no more than 1000 times max. 1000 mal

Sicherheit bei Überspannungen und äußeren Kurzschlüssen

Die Kondensatoren sind aufgrund des oben beschriebenen Aufbaus überspannungsfest, da sich die Kondensatoren nach einem Durchschlag im Dielektrikum selbst regenerieren, sofern die zulässigen Prüf- und Betriebsspannungen nicht überschritten werden. Sie sind außerdem sicher gegen äußere Kurzschlüsse, sofern bei den dabei entstehenden Stoßentladungen die zugelassenen Grenzströme (I_s) nicht überschritten werden.

IEC 61071 Permitted Overvoltages Zulässige Überspannungen

Protection Against Overload and Failure at the End of Useful Service Life


In the event of overvoltage or thermal overload or ageing at the end of the capacitor's useful service life, an increasing number of self-healing breakdowns may cause rising pressure inside the capacitor. To prevent it from bursting, the capacitors of series E62, E63 and E65 are fitted with an obligatory «break action mechanism» (BAM). This safety mechanism is based on an attenuated spot at one of the connecting wires inside the capacitor. With rising pressure the case begins to expand, mainly by opening the folded crimp and pushing the lid upwards. As a result, the prepared connecting wire is separated at the attenuated spot, and the current path is interrupted irreversibly.

It has to be noted that this safety system can act properly only within the permitted limits of loads and overloads.

Schutz gegen Überlastung und Fehlfunktionen am Ende der Lebensdauer

Bei spannungsmäßiger oder thermischer Überlastung bzw. am Ende der Lebensdauer kann durch zahlreiche Selbstheildurchschläge ein Überdruck im Kondensator entstehen. Um ein Bersten der Gehäuse zu verhindern. sind die Kondensatoren der Baureihen E62, E63 und E65 generell mit einer Überdruck-Abreißsicherung (BAM) versehen. Diese Sicherung besteht aus einer Sollbruchstelle in einem der Anschlussdrähte. Bei einem Überdruck im Kondensator verlängert sich das Gehäuse durch das Öffnen der gestauchten Sicke bzw. Wölbung des Metalldeckels und die Stromzufuhr zu den Kondensatorwickeln wird an der Sollbruchstelle irreversibel unterbrochen. Es ist zu beachten, dass dieses Sicherungsprinzip nur innerhalb der zulässigen Be- und Überlastungsgrenzen zuverlässig wirken kann.

MIND HAZARDS OF EXPLOSION AND FIRE

Capacitors consist mainly of polypropylene (up to 90%), i.e. their energy content is relatively high. They may rupture and ignite as a result of internal faults or external overload (e.g. temperature, overvoltage, harmonic distortion). It must therefore be ensured, by appropriate measures, that they do not form any hazard to their environment in the event of failure or malfunction of the safety mechanism.

FIRE LOAD: approx. 40 MJ/kg

EXTINGUISH WITH: solid extinguishing agent, CO2, foam

■ BERSTRISIKO UND BRANDLAST BEACHTEN

Kondensatoren bestehen zu bis zu 90% aus Polypropylen, d.h. ihre Brandlast ist relativ hoch. Infolge von internen Fehlern oder externen Faktoren (z.B. Temperatur, Überspannung, Oberschwingungen) können sie platzen und sich entzünden. Deshalb ist durch geeignete Maßnahmen dafür zu sorgen, dass sie im Fehlerfall bzw. bei einem Versagen der Sicherungsmechanismen kein Risiko für ihre Umgebung darstellen.

BRANDLAST: ca. 40MJ/kg

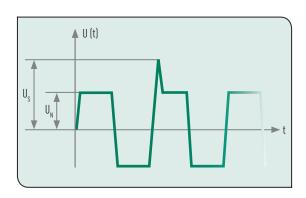
LÖSCHMITTEL: Trockenlöschmittel, CO₂, Schaum

The terms and abbreviations used in this brochure are based mainly on the actual standard for power electronics capacitors, IEC 61071, however, minor deviations may occur.

Die in diesem Heft verwendeten Begriffe und Abkürzungen orientieren sich weitestgehend an der gültigen Norm für Leistungselektronik-Kondensatoren, IEC 61071. Geringfügige Abweichungen sind jedoch möglich.

Rated capacitance C_N

Capacitance value rated at 20°C / 50 Hz.


Rated Voltage U_N

The maximum or peak voltage of either polarity of a reversing or nonreversing type wave form for which the capacitor has been designed and rated (unlike other standards for AC capacitors, the rated voltage is not the rms value).

Bemessungsspannung (Nennspannung) U_N

Größtwert bzw. Scheitelwert der Spannung, für die der Kondensator dimensioniert und benannt ist (abweichend von anderen Normen für Wechselspannungskondensatoren nicht der Effektivwert!)

Bemessungskapazität (Nennkapazität) C_N Nennwert der Kapazität, bezogen auf 20°C, 50 Hz.

Non recurrent surge voltage Us

Voltages beyond the rated voltage induced by switching or faults of the system or any part of it. Maximum count 1000 times with a duration of not more than 100 ms each.

Stoßspitzenspannung Us

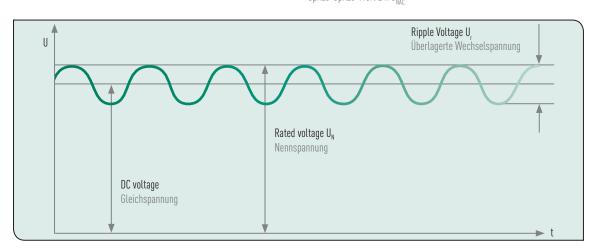
Höchster Spitzenwert, der vereinzelt kurzzeitig im Störungsfall auftreten darf. Maximale Anzahl 1000 mal mit einer Höchstdauer von jeweils 100 ms.

rms voltage U_{rms}

Root mean square of max. permissible value of sinusoidal AC voltage in continuous operation. In power electronics, the RMS voltage is usually not the rated voltage value of the capacitor.

Effektive Wechselspannung Urms

Maximal zulässiger Effektivwert von sinusförmiger Wechselspannung im Dauerbetrieb. In der Leistungselektronik ist der Effektivwert in der Regel nicht der Nennwert des Kondensators.


Ripple voltage U_r

Maximum value of the peak-to-peak alternating component of the uni-directional voltage. This value is stated only for DC-capacitors. The peak-to-peak value of AC- and AC/DC-types is always 2 x U $_{\mbox{\scriptsize NaC}}$

Überlagerte Wechselspannung U_r

Maximalwert des dauernd zulässigen Spitze-Spitze-Wertes der einer DC-Spannung überlagerten Wechselspannung. Dieser Wert wird nur bei DC-Kondensatoren angegeben. Bei AC und AC/DC –Typen beträgt der zulässige Spitze-Spitze-Wert 2 x U_{wer}

Voltage test between terminals $U_{\mbox{\tiny BB}}$

Routine test of all capacitors conducted at room temperature, prior to delivery. A further test with 80% of the test voltage stated in the data sheet may be carried out once at the user's location.

Prüfspannung Belag/Belag UBB

Prüfspannung, mit der alle Kondensatoren als Stückprüfung zwischen den Anschlüssen vor der Auslieferung geprüft werden. Beim Anwender ist eine Wiederholung dieser Prüfung mit dem O,8fachen Wert der Prüfspannung zulässig.

Voltage test between terminals and case U_{BG}

Routine test of all capacitors between short-circuited terminals and case, conducted at room temperature. May be repeated at the user's location.

Prüfspannung Belag/Gehäuse U_{BG}

Prüfspannung, mit der alle Kondensatoren zwischen den kurzgeschlossenen Anschlüssen und dem Gehäuse als Stückprüfung vor der Auslieferung geprüft werden. Beim Anwender ist eine Wiederholung dieser Prüfung zulässig.

Insulation voltage Ui

rms value of the AC voltage for which the terminals to case insulation has been designed and tested. Based on the test voltage U_{BG} stated in the catalogue, U_{i} can be calculated as follows:

Isolationsspannung Ui

Effektivwert der Wechselspannung, nach der die Isolation zwischen den Anschlüssen und dem Gehäuse bemessen und geprüft ist. Aus der im Katalog angegebenen Prüfspannung U_{RG} lässt sich der Wert U_i wie folgt berechnen:

$$U_{i} = \frac{U_{BG} - 1000V}{2}$$

Rate of voltage rise (du/dt)_{max}

Maximum permitted repetitive rate of voltage rise of the operational voltage.

Flankensteilheit der Spannung (du/dt)_{max}

Periodisch zulässiger Maximalwert der Flankensteilheit der Betriebsspannung. Es gilt der Zusammenhang:

$$\hat{I} = C_N \times (du/dt)_{max}$$

Maximum non-repetitive rate of voltage rise (du/dt)s

Peak rate of voltage rise that may occur non-repetitively and briefly in the event of a fault.

Stoß-Flankensteilheit (du/dt)s

Höchster Spitzenwert der Flankensteilheit der Spannung, der vereinzelt im Störungsfall auftreten darf. Es gilt der Zusammenhang:

$$I_{s} = C_{N} \times (du/dt)_{s}$$

I_c = non-repetitive peak current Stoßspitzenstrom

Maximum current I_{max}

Maximum rms value of permissible current in continuous operation. The values given in the data sheets are related to either the specified maximum power dissipation or the current limits of the connection terminals.

$Maximalstrom\ I_{max}$

Maximaler Effektivwert des im Dauerbetrieb zulässigen Stromes. Die im Datenblatt angegebenen Werte ergeben sich entweder aus der maximal zulässigen Verlustleistung oder der Stromtragfähigkeit der Anschlüsse.

Peak current Î

Maximum permitted repetitive current amplitude during continuous operation.

Spitzenstrom Î

Periodisch zulässiger Scheitelwert des Stromes.

Non-repetitive peak current (surge) Is

Maximum current that may occur non-repetitively and briefly in the event of a fault. Maximum count 1000 times with a duration of not more than 50 ms each.

Stoßspitzenstrom Is

Höchster Spitzenwert, der vereinzelt kurzzeitig im Störungsfall auftreten darf. Maximale Anzahl 1000 mal mit einer Höchstdauer von jeweils 50 ms.

Series resistance Rs

Equivalent resistance representing the sum of the Ohmic resistances occurring inside the capacitor. Essential for calculation of the current dependent losses.

Serienwiderstand Rs

Ersatzwiderstand, welcher die Summe der im Kondensator auftretenden Ohmschen Widerstände repräsentiert. Maßgebend für die Berechnung der Stromwärmeverluste.

$$P_{VR} = I_{eff}^2 \times R_s$$

 P_{vR} = current dependent losses Stromwärmeverluste

Equivalent Series Resistance $R_{\rm ESR}$

Represents the sum of all loss resistances occurring in the capacitor (incl. ohmic resistance R_s). It depends on frequency and is essential for the calculation of the capacitor's total power losses $P_{\rm vr}$

Serienersatzwiderstand R_{ESR}

Repräsentiert die Summe aller im Kondensator auftretenden Verlustwiderstände (einschließlich Ohmsche Widerstände R_s). Er ist frequenzabhängig und maßgebend für die Berechnung der Gesamtverluste des Kondensators P_{ν} .

$$R_{ESR} = R_S + \frac{\tan \delta_0}{2\pi f \times C_N}$$

$$P_{v} = I_{rms}^{2} \times R_{ESR}$$

P_v = capacitor's total power losses Geamtverluste des Kondensators

Self-inductance L_e

Represents the sum of all inductive elements which are – for mechanical and construction reasons – contained in any capacitor.

Eigeninduktivität L

Repräsentiert die Summe aller induktiven Bestandteile, die konstruktionsbedingt in jedem Kondensator enthalten sind.

Resonant frequency f_{res}

The capacitance and self-inductance of any capacitor form a series resonant circuit. Above the resonant frequency, the inductive part of this LC-circuit prevails. The capacitor would then behave as an inductor.

Resonanzfrequenz f_{res}

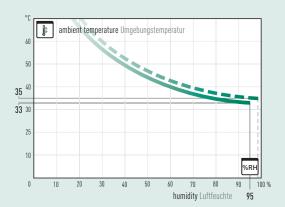
$f_{\text{res}} = \frac{1}{2\pi \sqrt{L_{p} \times C_{N}}}$

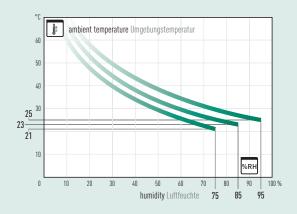
Rated energy contents W_N

Energy stored in the capacitor when charged at rated voltage.

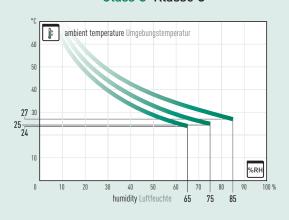
Nennenergiegehalt W_N

Bei Nennspannung im geladenen Kondensator gespeicherte Energie.


%RH


Humidity classes

euchteklassen


Class C Klasse C

Class F Klasse F

Class G Klasse G

max. relative humidity 95% annual means 100% occasional condensation permitted

max. relative Luftfeuchte 95% Jahresdurchschnitt, 100% gelegentlich Betauung zulässig

max. relative humidity
75% annual means
95% 30 days/year
condensation not permitted

max. relative Luftfeuchte 75% Jahresdurchschnitt 95% 30 Tage/Jahr Betauung nicht zulässig

max. relative humidity
65% annual means
75% occasional
85% 60 days/year
condensation not permitted

max. relative Luftfeuchte 65% Jahresdurchschnitt, 75% gelegentlich 85% 60 Tage/Jahr Betauung nicht zulässig

Clearance in air L

The shortest distance between conducting parts of the terminals or between terminals and case. In this catalogue, we state only the shorter.

Luftstrecke L

Kürzeste Strecke zwischen leitenden Teilen der Anschlüsse bzw. zwischen Anschlüssen und Gehäuse. In diesem Katalog wird stets die kürzere von beiden angegeben.

Creepage distance K

The shortest distance along an insulated surface between conducting parts of the terminals or between terminals and case. In this catalogue, again we state only the shorter.

Kriechstrecke K

Kürzeste Strecke entlang der Isolierung zwischen leitenden Teilen der Anschlüsse bzw. zwischen Anschlüssen und Gehäuse. In diesem Katalog wird stets die kürzere von beiden angegeben.

Dielectric dissipation factor $tan \delta_0$

Constant dissipation factor of the dielectric material for all capacitors at their rated frequency. The typical loss factor of our dielectric materials is $tan\delta_0 = 2 \times 10-4$.

Dielektrischer Verlustfaktor tan δ_0

Konstanter Verlustfaktor des Dielektrikums für alle Kondensatoren bei Nennfrequenz. Der typische Verlustfaktor unserer dielektrischen Materialien beträgt $\tan \delta_0 = 2 \times 10-4$.

Loss factor of the capacitor $tan\delta$

Loss factor of the capacitor at sinusoidal ac voltage and applied frequency. It is calculated as follows:

Verlustfaktor des Kondensators tanò

Verlustfaktor des Kondensators bei sinusförmiger Wechselspannung und Einsatzfrequenz. Er errechnet sich wie folgt:

 $\tan\delta(f) = \tan\delta_0 + R_s \times 2\pi f \times C_N$

f = operating frequency Einsatzfrequenz

Thermal resistance R_{th}

The thermal resistance indicates by how many degrees the capacitor temperature at the hotspot rises above the ambient temperature per Watt of the heat dissipation losses. It depends on a variety of factors. Hence the values shown in our data sheets refer to one single operating point only which is valid for still air/natural convection cooling. With forced cooling, Rth is reduced. Mind that the maximum Hotspot-temperature must not be exceeded even with active cooling. Depending on the size of the capacitor, it takes between a few minutes and several hours until this temperature balance is finally reached. We recommend a test set-up with PT100 thermal elements for exact values, or to contact ELECTRONICON's staff for detailed support.

Thermischer Widerstand Rth

Der Thermische Widerstand gibt an, um wieviel Grad sich der Kondensator im Hotspot gegenüber der Umgebungstemperatur je Watt Verlustleistung erwärmt. Der Wert gilt für ruhende Luft / Selbstkühlung. Der thermische Widerstand hängt von einer Vielzahl verschiedener Faktoren ab. Daher stellt der Wert in den Datentabellen nur einen Arbeitspunkt dar, welcher für ruhende Luft/Selbstkühlung gilt. Bei aktiver Luftkühlung wird der thermische Widerstand kleiner. Die Einhaltung der maximalen Hotspot-Temperatur ist jedoch auch bei aktiver Kühlung stets zu gewährleisten. Je nach Größe des Kondensators dauert es Minuten bis mehrere Stunden, bis der Kondensator diese Endtemperatur erreicht hat. Zur Ermittlung exakter Werte empfehlen wir einen Versuchsaufbau mit PT100-Thermoelementen oder die Kontaktaufnahme mit ELECTRONICON.

Ambient temperature Θ_{U}

Temperature of the surrounding air, measured 10 cm away and at 2/3 of the case height of the capacitor.

Umgebungstemperatur ⊕_U

Temperatur der umgebenden Luft, gemessen in ca. 10 cm Abstand vom Kondensator in etwa 2/3 der Gehäusehöhe.

Lower category temperature Θ_{min}

Lowest permissible ambient temperature at which a capacitor may be used.

Untere Grenztemperatur Θ_{min}

Niedrigste Umgebungstemperatur, bei der der Kondensator in Betrieb genommen werden darf.

Upper category temperature Θ_{max}

Highest permissible temperature during continuous operation, i.e. temperature at the hottest point of the capacitor case. It is, however, not sufficient to monitor the surface temperature. Life-span and safe operation crucially depend on the observance of the hotspot temperature.

Obere Grenztemperatur Θ_{max}

Höchste zulässige Temperatur an der heißesten Stelle der Kondensatoroberfläche, bei der der Kondensator dauerhaft betrieben werden darf. Es ist jedoch nicht ausreichend, die Oberflächentemperatur zu kontrollieren. Entscheidend für Lebensdauer und sicheren Betrieb ist die Einhaltung der Hotspot-Temperatur.

Hotspot temperature Θ_{HOTSPOT}

Temperature at the hottest spot inside the capacitor. It has to be noted that, depending on the thermal power dissipation generated inside the capacitor, there is always a temperature difference between hotspot and surface. As the hotspot is usually not accessible for measurement, $\Theta_{\mathtt{HOTSPOT}}$ must be calculated based on the data stated in the catalogue or data sheet:

Hotspot-Temperatur
$$\Theta_{\text{HOTSPOT}}$$

Temperatur der heißesten Stelle im Kondensatorinneren. Es ist zu beachten, dass in Abhängigkeit der im Kondensatorinneren generierten Verlustleistung stets ein Gefälle zwischen Hotspot und der Oberfläche besteht. Da die Hotspot-Temperatur der Messung nicht zugänglich ist, muss die Ermittlung rechnerisch mit Hilfe der Angaben im Datenblatt/Katalog erfolgen. Es gilt:

$$\Theta_{\text{unternt}} = \Theta_{\text{II}} + P_{\text{V}} \times R_{\text{H}}$$

$$P_v = I_{rms}^2 \times R_s + Q \times tan\delta_0$$

P_w: thermal power dissipation Verlustleistung

Q: reactive power of the capacitor Blindleistung des Kondensators

 I_{ms} : rms value of operating current Effektivwert des Betriebsstroms

 R_s , $tan\delta_n$: acc. to data sheet/catalogue nach <code>Datenblatt/Katalog</code>

Important: No thermal dissipation losses are admissible when operating a capacitor at an ambient temperature equal to the upper category temperature, i.e. I_{mn} and Ω shall be zero (operation at pure DC voltage)!

Es ist zu beachten: Wenn der Kondensator bei einer Umgebungstemperatur gleich der oberen Grenztemperatur betrieben werden soll, ist keine Verlustleistung mehr zulässig, d.h. I_{rms} und Q müssen = O sein (reiner Gleichspannungsbetrieb)!

Maximum power dissipation P_{max}

Maximum permitted power dissipation for the capacitor's operation.

Höchste Verlustleistung Pmax

Maximal zulässige Verlustleistung, mit der der Kondensator betrieben werden darf.

$$P_{\text{max}} = \frac{\Theta_{\text{HOTSPOT}} - \Theta_{\text{U}}}{R_{\text{HA}}}$$

LIFETIME Statements vs. Failure Rate

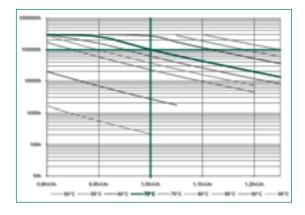
Statements on lifetime can become misleading as they may imply unreasonable assumptions; with clever de-rating of temperatures and operating voltages, one may create the illusion that a capacitor should last a million hours or more, while such statement would be purely theoretical and impossible to prove (even more so that most of the design features used in modern capacitors have not been in use for more than 20 years and would therefore not be backed up by any empirical references).

Another problem with lifetime statements is that they do not inform about failures during the "rated" lifetime, and – in turn – may create the impression that after the expiration of the "rated" lifetime, the capacitor shall be exhausted, or fail. Any engineer will agree from own experience that in reality, there are components which may last much longer even under harder conditions, whilst others may fail prematurely.

In the lifetime graphic (1), statements for more than 300,000 hrs are cut off as they are technically unreasonable. For higher HOTSPOT temperatures, no statements are made regarding operation at overvoltage: the simultaneous operation at limit values results in unpredictable conditions. Here, the statement of a FIT rate - that reflects the growing risk at such extreme conditions - would be of far better use.

In der Lebensdauerkurve (1) sind Angaben zu mehr als 300.000h abgeschnitten, da sie technisch unvernünftig sind. Für höhere HOTSPOT-Temperaturen werden keine Angaben mehr zum Betrieb bei Überspannung getroffen: der gleichzeitige Betrieb unter Grenzbedingungen mündet in unvorhersagbaren Verhältnissen. Hier ist die Angabe einer FIT-Rate, welche die wachsenden Risiken bei derartigen Extrembedingungen reflektiert, wesentlich nutzbringender.

ELECTRONICON have come to abstain from the lifetime discussion, and introduced the statement on FIT rates (Failures In Time). By reflecting the probability (in other words: risk) of failures during the operating period under selected operating conditions, it provides much better information on what effects to expect when de-rating (or over-loading) a capacitor.


The failure probability of a component is a statistical value which is described by a log-normal distribution:

$$N = N_0 \times e^{-\lambda t}$$

Lebensdauerangaben vs. Ausfallrate

Angaben zur Lebensdauer können in die Irre führen, da sie unrealistische Annahmen einschließen können: mit einer geschickten Kombination von Betriebstemperaturen und -spannungen ließe sich so die Illusion von einer Million und mehr Betriebsstunden erzeugen, eine rein theoretische und schwerlich nachweisbare Angabe (umso mehr, als die meisten technischen Merkmale moderner Kondensatoren nicht länger als 20 Jahre im praktischen Einsatz erprobt und längere Lebensdauerangaben somit kaum durch empirische Daten unterlegt sind).

Ein weiteres Problem von Lebensdauerangaben ist, daß sie keine Auskunft über Ausfälle während der "Nenn"lebensdauer geben und im Gegenzug den Eindruck erwecken können, daß nach Ablauf der angegebenen Lebensdauer der Kondensator "verbraucht" wäre oder ausfiele. Ein jeder Ingenieur weiß aber aus eigener Erfahrung, daß es in der Praxis Komponenten gibt, welche selbst unter härteren Einsatzbedingungen die angegebene Lebenserwartung bei weitem überdauern, während andere vorzeitig ausfallen können.

ELECTRONICON ist von der Lebensdauerdiskussion weg dazu übergegangen, Angaben zur FIT-Rate (Failures In Time) bereitzustellen. Indem sie die Wahrscheinlichkeit (mit anderen Worten: das Risiko) von Ausfällen während der Nutzungsdauer unter bestimmten Betriebsbedingungen widerspiegelt, liefert sie wesentlich bessere Informationen über die zu erwartenden Konsequenzen aus einer übermäßigen oder schonenderen Belastung eines Kondensators.

Die Ausfallwahrscheinlichkeit eines Bauelementes ist eine statistische Größe, die mit Hilfe einer Normalverteilung beschrieben wird. Es gilt:

N = number of functional components after period t Anzahl der nach der Zeit t intakten Bauelemente

 \mbox{N}_0 = total number of components at time t=0 Gesamtzahl der Bauelemente zum Zeitpunkt t=0

 λ = failure rate Ausfallrate

 λ is the failure rate, which alternatively is also stated as the so-called FIT-rate (FIT = Failures In Time = $\lambda \times 10^9$). Service cycles may be calculated based on the so-called MTBF value (mean time between failures):

MTBF = $1/\lambda$. The failure rate is very closely linked with the operating temperature and the operating voltage applied to the capacitor.

As standard, our FIT rates are related to a realistic (from a technical and statistical point of view) operating interval of t=100,000 hours, assuming a capacitor hotspot temperature of 70°C. Hotspot is essential here as it is the only reliable criterion in relation to the capacitor's temperature stress. The outside temperatures may be comparably low, however with high electrical stress the temperature rise in the capacitor may be substantial due to the power dissipation losses produced inside. This could result in the same temperature stress as a generally high ambient temperature.

Hence the simultaneous operation of capacitors at highest permissible vol-tage and operating temperature should be avoided; otherwise, failure rates may increase beyond reasonable technical reliability.

In fact, a FIT rate of 50 would mean, for example: "If 10,000 capacitors are operated simultaneously for 100,000 hours at rated voltage and with a hotspot temperature of no more than 70°C, then out of this batch no more than 50 pcs may fail during the entire period." Any period during which the hotspot temperature is lower than 70°C, or the voltage is less than rated voltage, will contribute to a reduction of the 50 FIT.

After the reference interval, the capacitors will continue operating; however the probability of failures may change. It shall be noted that the statements on FIT rates are based mainly on long-year empirical experience; at ELECTRONICON, we are conducting numerous and regular reliability tests to verify and back up our empirical knowledge. However dedicated studies designed to prove FIT rates would require the test of thousands of capacitors, over hundreds of thousands of hours, which is technically and commercially impossible. Even the use of statistical methods and accelerated ageing factors encounters physical and chemical limits.

Hence lifetime formulas such as

$$\text{Lifetime (U)} = \left(\frac{\mathsf{U}_{\text{working}}}{\mathsf{U}_{\text{rated}}} \right)^n \quad \text{and} \quad \text{Lifetime } \{\Theta\} = 2^{\left(\frac{\Theta_{\text{working}} \cdot \Theta_{\text{rated}}}{7 \, \text{K}}\right)}$$

should not be used to calculate absolute figures of expected lifetime. These rules and formulas are mainly designed to give an approximate feeling for the importance of voltage and temperature.

Dabei ist λ die Ausfallrate, die alternativ auch als FIT –Rate angegeben wird (FIT = Failures In Time = $\lambda \times 10^{9}$).

Zur Berechnung von Wartungszyklen wird mitunter auch der sogenannte MTBF (mean time between failures) verwendet. Hier gilt die Beziehung: MTBF = $1/\lambda$

Die Ausfallrate ist stark abhängig von der Temperatur und der Betriebsfeldstärke. Die FIT-Raten im Katalogsortiment beziehen sich auf ein aus technischer und statistischer Sicht realistisches Betriebsintervall von 100.000 Stunden bei Nennspannung, unter Annahme einer Dielektrikumstemperatur (=Hotspot-Temperatur) von 70°C. Der Hotspot ist in diesem Zusammenhang bedeutsam, da er das einzige zuverlässige Kriterium in Bezug auf die thermische Belastung des Kondensators liefert. So kann die Außentemperatur verhältnismäßig niedrig sein, während im Innern des Kondensators die infolge der elektrischen Belastung freigesetzte Verlustleistung einen erheblichen Temperaturanstieg bewirken kann. Dies führt u.U. zur selben thermischen Belastung wie eine allgemein hohe Umgebungstemperatur.

Der Betrieb von Kondensatoren mit der höchsten zulässigen Spannung und der höchsten zulässigen Betriebstemperatur sollte deshalb vermieden werden, andernfalls können die Ausfallraten so hoch werden, dass keine technisch sinnvollen Zuverlässigkeiten mehr gewährleistet sind.

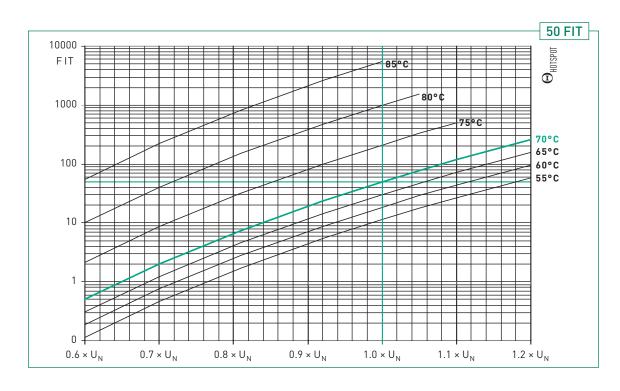
De facto bedeutet eine FIT-Rate von 50 beispielsweise: "Wenn 10.000 Kondensatoren eines Loses gleichzeitig 100.000 h bei Nennspannung und mit einer HOTSPOT-Temperatur von nicht mehr als 70°C betrieben werden, dann ist während der gesamten Betriebsdauer mit dem Ausfall von nicht mehr als 50 Stück dieses Loses zu rechnen." Jeder Zeitraum, während dem die HOTSPOT-Temperatur weniger als 70°C beträgt, oder die Spannung unter der Nennspannung liegt, trägt zu einer Reduzierung der FIT-Rate bei.

Nach Ablauf des Referenzzeitraums werden die Kondensatoren auch weiterhin funktionieren, allerdings kann sich die Ausfallwahrscheinlichkeit ändern. Es ist zu beachten, daß die FIT-Angaben vor allem auf langjährigen empirischen Erfahrungen beruhen; daneben führen wir bei ELECTRONICON zahlreiche regelmäßige Zuverlässigkeitsprüfungen durch, um unsere empirischen Erkenntnisse zu überprüfen und zu untermauern. Spezielle Studien, um FIT-Raten zu beweisen, würden jedoch den gleichzeitigen Test von Tausenden Kondensatoren über hunderttausende Stunden erfordern, ein technisch und kommerziell unmögliches Unterfangen. Selbst die Verwendung statistischer Methoden und beschleunigter Alterungsfaktoren hat hierbei physikalische und chemische Grenzen.

Daher sollten Lebensdauerformeln wie

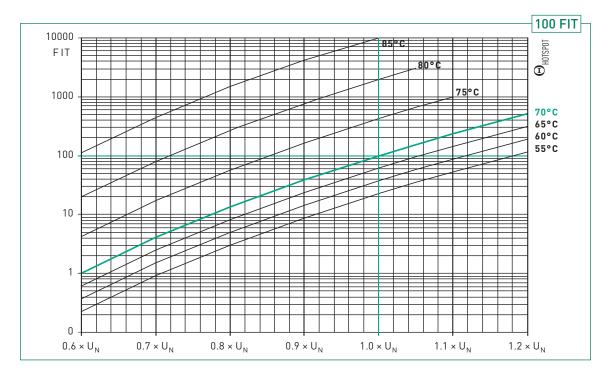
$$\text{Lebensdauer} \left(\textbf{U} \right) = \left(\frac{\textbf{U}_{\text{Betrieb}}}{\textbf{U}_{\text{Nonn}}} \right)^n \text{ und Lebensdauer} \left(\boldsymbol{\Theta} \right) = 2^{\left(\frac{\boldsymbol{\Theta}_{\text{Betrieb}} \cdot \boldsymbol{\Theta}_{\text{Nenn}}}{7 \, \text{K}} \right)}$$

nicht verwendet werden, um absolute Werte für erwartete Lebensdauerangaben zu errechnen. Derartige Regeln und Formeln sind hauptsächlich dafür geschaffen, einen ungefähren Eindruck für die Bedeutsamkeit der Einflußfaktoren Temperatur und Spannung zu vermitteln.

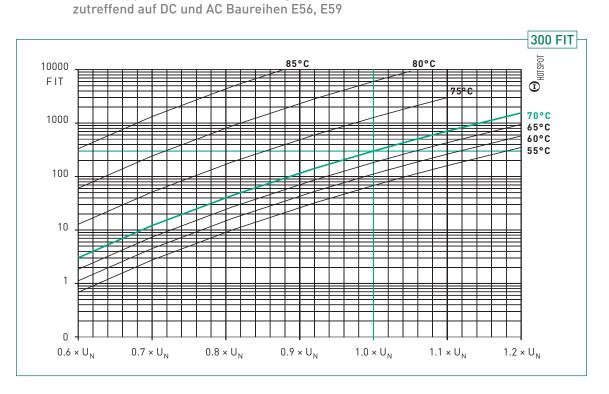

All standard items of ELECTRONICON are designed and dimensioned to comply with their FIT rate as stated in the catalogue or special data sheet. FIT rate statements related to longer reference intervals can be made on request. Further, capacitor designs can be adapted on request to achieve lower FIT at the intended operating conditions.

Alle Standardtypen von ELECTRONICON sind so konstruiert und ausgelegt, daß sie den im Katalog oder speziellem Datenblatt angegebenen FIT-Raten gerecht werden. FIT-Raten-Angaben zu längeren Betrachtungszeiträumen sind auf Anfrage erhältlich. Darüber hinaus können Kondensatoren speziell angepasst werden, um die FIT-Rate für die beabsichtigten Einsatzbedingungen zu beeinflussen und zu verbessern.

Based on our current state of knowledge derived from test data and experience, we quote the following FIT rates for our standard products at the a.m. conditions:

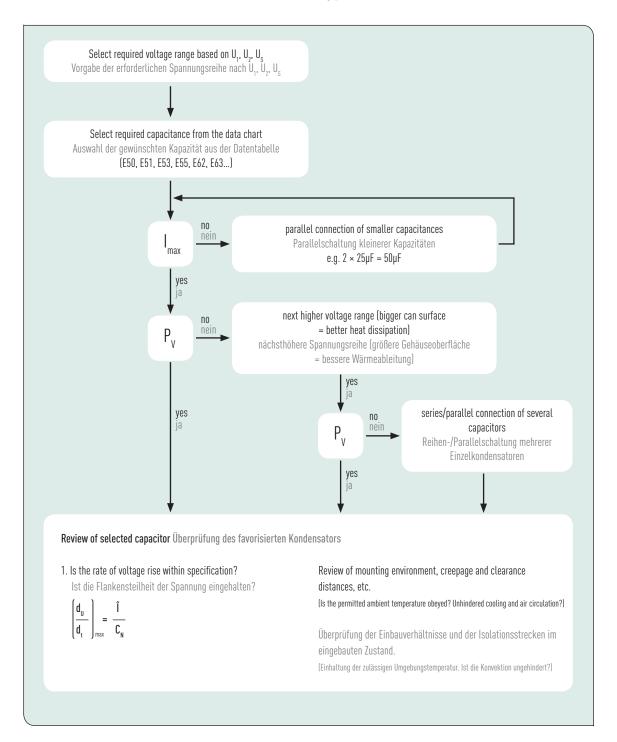

Basierend auf unserem in Tests und aus Erfahrungswerten gewonnenen derzeitigen Erkenntnisstand geben wir für die o.a. Bedingungen folgende FIT-Raten an:

50 FIT usually applicable to DC ranges E50, E51, E63, E53-H, E55 zutreffend auf Baureihen E50, E51, E63, E53-H, E55



100 FIT usually applicable to AC ranges E62, E65, E53-LI, E12, E33

zutreffend auf Baureihen E62,E65, E53-LI, E12, E33



300 FIT usually applicable to DC and AC ranges E56, E59

When selecting the proper capacitor for an application, the criteria voltage, current and dissipation losses have to be evaluated step by step as follows:

Bei der Auswahl des geeigneten Kondensators für eine Anwendung werden nacheinander die Kriterien Spannung, Strom und Verlustleistung wie folgt abgeprüft:

Typically the selection of capacitors for a special application should be as demonstrated in the examples below.

Der Ablauf der Berechnung für die Auswahl eines Kondensators für einen speziellen Einsatzfall wird hier anhand von typischen Beispielen dargestellt.

A. Capacitor for an AC application Kondensator für Wechselspannungsanwendung A capacitor with a capacitance of 20 µF is needed for a trapezoidal voltage waveform. Ein Kondensator mit einer Kapazität von 20 µF soll bei einer linear umschwingenden Trapezspannung betrieben werden. U₁ = 1000 V U₂ = 500 V peak voltage of each polarity_Spitzenspannung ac frequency_Wechselspannungsfrequenz time of voltage reversa_Umschwingzeit

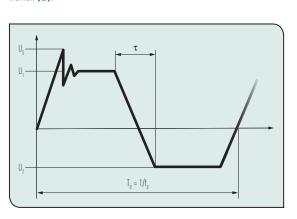
Choice of the rated voltage:

The rated voltage of the capacitor must be equal to or bigger than the higher one of the two voltages U_1 and U_2 , i.e.: $U_N > 1000$ V.

An AC capacitor, e.g. from the E62 series will have to be selected (a).

Note:

Short-term non-periodical voltage peaks beyond $\mathbf{U_1}$ or $\mathbf{U_2}$ must not exceed the permitted Non recurrent surge voltage $\mathbf{U_S}$ stated in the data charts. Voltage peaks counting more than 1000 or exceeding $\mathbf{U_S}$ shall be considered as rated voltage.


Achtung:

Nichtperiodische kurzzeitige Spannungsspitzen über $\rm U_1$ oder $\rm U_2$ hinaus dürfen die zulässige Stoßspitzenspannung ($\rm U_s$) nicht überschreiten. Spannungsspitzen, welche mehr als 1000 mal auftreten oder $\rm U_s$ übersteigen, müssen als Nennspannung berücksichtigt werden.

Wahl der Nennspannung:

Die Nennspannung des Kondensators muss größer oder gleich der größeren der beiden Spannungen U_1 oder U_2 sein, d.h.: $U_N \ge 1000$ V.

Es ist ein Wechselspannungskondensator, z.B. aus der Baureihe E62 zu wählen (a).

For proper determination of current ratings, the rate of voltage rise needs to be calculated first:

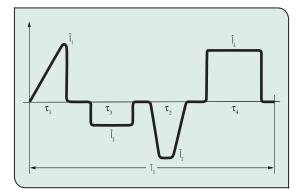
Um die Strombelastung kalkulieren zu können, muss zunächst die Flankensteilheit der Spannungsänderung bestimmt werden:

$$\frac{du}{dt} \ = \ \frac{U_1 + U_2}{dt} \ = \ \frac{1500 \ V}{100 \ \mu s} \ = \ 15 \ V \ / \ \mu s$$

Based on the calculated du/dt-value and the given data of f_0 and τ , the repetitive peak current and the rms current can be determined: (b)

Aus dem errechneten Wert du/dt und den bekannten Größen f_0 und τ lassen sich der periodisch auftretende Spitzenstrom und der Effektivstrom bestimmen: (b)

$$\hat{I} = C \cdot (du/dt) = 20 \,\mu F \cdot 15 \,V/\mu s = 300 \,A$$


$$I_{eff} = \hat{I} \cdot \sqrt{2 \cdot f_{i} \cdot \tau} = 46.5 \text{ A}$$

Note:

In a mix of sinusoidal and rectangular current pulses (see pic.), the rated value $\rm I_{\rm max}$ must not be exceeded.

Achtung:

Bei einer Mischung aus rechteck- und sinusförmigen Stromimpulsen (siehe Bild) darf der zulässige Wert für l $_{\max}$ nicht überschritten werden.

$$I_{\text{max}} = \sqrt{\frac{1}{I_0} \times \left[\frac{\hat{I}_1^2}{2} \times \tau_1 + \frac{\hat{I}_2^2}{2} \times \tau_2 + \hat{I}_3^2 \times \tau_3 + \hat{I}_4^2 \times \tau_4 \right]}$$

E62.XXX AC/DC **420...4000V AC / 700...5000V DC**

Based on the existing data, a capacitor can now be pre-selected from the catalogue.

Mit den vorhandenen Daten ist nun eine Vorauswahl des zu verwendenden Kondensators aus dem Katalogsortiment möglich.

	(i	a)						
	С _N (µF)	R_s (m Ω)	f _{res} (kHz)	R _{th} (K/W)	I _{max} (A)	Î (kA)	I _s (kA)	4
	U _N 168	BOV DC	/1000	V AC	U _{rms} 7	'20V	U s 2 50	
	1.5	5.3	30	26	10	0.3	0.9	
	2.2	4.6 6.9	440 320	22 18	16 10	0.25 0.35	0.8 1.05	
0.0	4	5.6	280	16	10	0.45	1.35	
	5 6.8	4.8 3.9	250 220	14 12	20 20	0.6	1.8	
1-1	8	4.	170	12	16	0.5	1.4	
	10 12	5.9	159 139	10 10	32 16	0.6	1.7 2.1	
	15	5.5	124	8.7	16	0.9	2.6	
	16. 18	3.6 2.7	120 119	7.2 7.2	40 40	0.95 1.0	2.9 3.1	
	20 -	1.7	(b	5.7	50	1.2	3.5	
	28	1.3	80	5.0	50	1.6	4.9	
	33							

Above all, the operating life of the capacitors depends on the internal temperature during operation, and the field strength in its dielectric. The capacitors have been designed for a minimum service life of 100,000 hrs. These values are rated for the hotspot temperatures specified in the selection charts.

It must therefore be verified whether the selected capacitor can be operated as intended under the expected ambient conditions.

First of all, the heat dissipation losses of the capacitor under the intended operating conditions need to be determined; acc. to IEC 61071, they are calculated by the following formula:

Die Lebensdauer der Kondensatoren hängt vor allem von der Betriebstemperatur im Inneren des Kondensators, sowie von der Feldstärkebeanspruchung im Dielektrikum ab. Die Kondensatoren sind dimensioniert für eine Lebensdauer von mindestens 100.000 Stunden. Diese Werte gelten für die in den Auswahltabellen angegebenen Hotspot-Temperaturen. Es muss daher überprüft werden, ob der ausgewählte Kondensator bei der zu erwartenden Umgebungstemperatur wie beabsichtigt betrieben werden kann.

Zunächst ist die Verlustleistung des Kondensators bei den beabsichtigten Einsatzbedingungen zu bestimmen; nach IEC 61071 berechnet sie sich wie folgt:

$$P_{V} = P_{VD} + P_{VR} = \hat{U}^{2} \pi \cdot f_{0} \cdot C \cdot tan \delta_{0} + I_{eff}^{2} \cdot R_{S}$$

For non-symmetric voltages, \hat{U} has to be defined as $(U_1 + U_2)/2^*$. In our example, the power dissipation factor is $P_V = P_{VD} = 0.85 \text{ W} + 2.59 \text{ W} = 3.44 \text{ W} **$.

The values $\tan\delta_0$ = 2 × 10⁻⁴ and R_s = 1.2 m Ω were taken from the E62 data chart (c), (d).

*
$$\hat{U} = \frac{1000 \text{ V} + 500 \text{ V}}{2} = 750 \text{ V}$$

** $P_V = 750^2 \text{ V}^2 \cdot 3.1416 \cdot 120 \text{ Hz} \cdot 0.00002\text{F} \cdot 2 \cdot 10^4 + 46.5^2 \text{A}^2 \cdot 0.0012 \Omega$ = 0.85 W + 2.59 W = 3.44 W

Failure rate	100 FII (17
Lagertemperatur storing temperature	
Grenztemperaturen operating temperatures $\Theta_{\min} \dots \Theta_{\max} \dots \\ \Theta_{\text{HOTSPOT}} \dots$	
$\mathbb{C}_{_{N}}$ Toleranz tolerance	±10% (optional ±5%) 5000 s 2 ×10 ⁻⁴ (c)

Für $\hat{\mathbb{U}}$ ist im Falle einer unsymmetrischen Spannung der Wert $[\mathbb{U}_1 + \mathbb{U}_2]/2$ * zur Leistungsberechnung zu verwenden. Es ergibt sich für den angegebenen Betriebsfall eine Verlustleistung von

 $P_{_{V}}=P_{_{VD}}+P_{_{VR}}=0.85~W+2.59~W=3.44~W**,$ wobei für die Berechnung die Werte $tan\delta_{_{0}}=2\cdot10^{-4}$ und $R_{_{S}}=1.2~m\Omega$ aus der Datentabelle E62 verwendet wurden (c), (d).

	(d	I)	_ (e)					
C _N (µF)	R _s	f _{res} Ω) (kHz)	R _{th} (K/W)	I _{max}	Î (kA)	I _s (kA)	D ₁ × L ₁ (mm)	Maßbild Design
U _N 1	680V	DC / 1000V	'AC	U _{rms} 720)V U	s 2500V	′ U _i 125	50V U
1.5	5.	530	26	10	0.3	0.9	30 × 58	E1 ¹¹ / E4
2.2	4.	440	22	16	0.25	0.8	35 × 58	E2
3	6.	320	18	10		1.05	30 × 81	E111 / E4
4	5.	280	16	10	0.45	1.35	35 × 81	E2 ¹¹
5	4.	250	14	20	0.6	1.8	40 × 81	D1 ¹⁾
6.8	3.	220	12	20	0.8	2.4	45 × 81	D1 ¹⁾
8	4.	170	12	16		1.4	45 × 85	B1
10	3.	159	10	32	0.6	1.7	50 × 85	G1
12	5.	139	10	16	0.7	2.1	55 × 85	B1
15	5.	124	8.	16	0.9	2.6	60 × 85	D1 ¹⁾
16	3.	120	7.	40	0.95	2.9	65 × 95	G1
18	2	119	7.	40	1.0	3.1	65 × 95	G1
20	1.	.2 95	5.7	50	1.2	3.5	75 × 105	C2
28							85 × 105	

By using the value of thermal resistance R_{th} taken from the capacitor chart (e) we can calculate the temperature difference between the ambient temperature and the hottest spot inside the capacitor:

Mit Hilfe des thermischen Widerstandes $\rm R_{th}$ aus der Kondensatorentabelle (e) lässt sich die Temperaturdifferenz zwischen Umgebungstemperatur und dem heißesten Punkt im Kondensatorinneren ermitteln.

$$\Delta T = R_{H} \cdot P_{V} = 5.7 \text{ K/W} \cdot 3.44 \text{ W} = 20 \text{ K}$$

For a target service life of \geq 100.000 h the hotspot temperature must not exceed 70°C (f). That means that the maximum ambient temperature for this capacitor is:

Bei einer gewünschten Lebensdauer ≥100.000 h darf die Hotspot-Temperatur maximal 70°C betragen **(f)**. Daraus folgt die maximal zulässige Umgebungstemperatur für den Kondensator:

$$\Theta_{\text{U}}$$
 = Θ_{HOTSPOT} – Δ T = 50 °C

Determination of the Failure Rate:
Expected voltage and temperature conditions:

Berechnung der Ausfallrate:

Geplantes Spannungs-/Temperaturspektrum des Kondensators:

share of operation period Anteil an Betriebsdauer	operating voltage Betriebsspannung	Θ _{ambient}	Θ _{HOTSPOT}	U _B / U _N	FIT Rate*	FIT × share_Anteil
80 %	1000 V	45 °C	65 °C	1.0	ca. 60	48
20 %	900 V	55 °C	75 °C	0.9	ca.160	32
					total	80

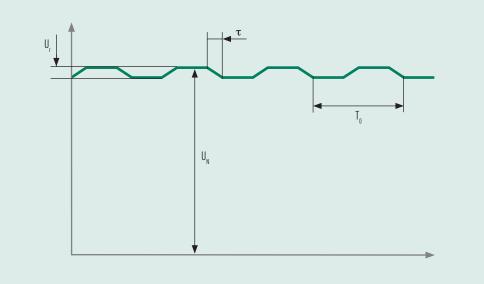
^{*} taken from diagram "100 FIT"_entnommen aus Diagramm "100 FIT

The FIT rate for this load is 80, $\lambda = 8 \times 10^{-8} \, h^{-1}$. This failure rate is vaild for a reference period of 100.000 hrs and may rise afterwards.

Die FIT-Rate beträgt für diese Belastung 80, $\lambda = 8 \times 10^{-8} \, h^{-1}$. Diese Ausfallrate gilt für einen Betrachtungszeitraum von 100.000 h und kann danach ansteigen.

B. Capacitor for a DC application

Kondensator für eine Gleichspannungsanwendung


A capacitor with a capacitance of 1000 μF shall be operated at a DC voltage of 950 V with a superposed ac voltage of 45 V. The ambient temperature is expected to be 45°C.

Ein Kondensator mit einer Kapazität von 1000µF soll bei einer Gleichspannung von 950 V mit 45 V überlagerter Wechselspannung betrieben werden. Es wird von einer Umgebungstemperatur von 45°C ausgegangen.

$$U_{r} = 45 \text{ V}$$
 $f_{0} = 1/T_{0} = 300 \text{ Hz}$
 $\tau = dt = 50 \text{ }\mu\text{s}$

superposed (ripple) voltage_überlagerte Wechselspannung ac frequency_Frequenz der überlagerten Wechselspannung time of voltage reversal_Umschwingzeit

Choice of the rated voltage:

The rated voltage of the capacitor must be equal to or bigger than the applied DC voltage plus ripple voltage, i.e.:

Wahl der Nennspannung:

Die Nennspannung des Kondensators muss größer oder gleich der anliegenden Gleichspannung zzgl. der überlagerten Wechselspannung sein, d.h.:

$$U_N \ge U_{DC} + U_r/2 = 950 \text{ V} + 22.5 \text{ V}$$

A DC capacitor with a rated voltage of 1000 V from the E63 series will have to be selected.

Es ist ein Gleichspannungskondensator mit einer Nennspannung von 1000 V DC aus der Baureihe E63 zu wählen.

1

The calculation of peak and rms current is done in a similar way as shown in example A.

Die Berechnung des Spitzen- und Effektivstroms erfolgt analog zu den Berechnungen in Beispiel A.

Determination of the rate of voltage rise

Bestimmung der Flankensteilheit der Spannungsänderung

$$\frac{du}{dt} = \frac{U_r}{dt} = \frac{45 \text{ V}}{50 \text{ }\mu\text{s}} = 0.9 \text{ V/}\mu\text{s}$$

repetitive peak current

periodisch auftretender Spitzenstrom

$$\hat{\textbf{\i}} = \textbf{C} \cdot (\text{du/dt}) = 1000~\mu\text{F} \cdot 0.9~\text{V/}\mu\text{s} = 900~\text{A}$$

rms current

3

Effektivstrom

$$I_{\text{eff}} = \hat{\mathbf{i}} \cdot \sqrt{2 \cdot f_0 \cdot \tau} = 155.9 \text{ A}$$

$$I_{\text{eff}} = 900 \text{ A} \cdot \sqrt{2 \cdot 300 \text{Hz} \cdot 0.00005}$$

= 155.9 A

Pre-selection of the capacitor from the catalogue: Catalogue item 1000 μ F 1000 V DC has been rated for a maximum current of 80 A (a). The current load per capacitor can be reduced by dividing the total capacitance into several capacitors, e.g. 2 \times 500 μ F. There is a capacitor 500 μ F 1200 V (E63.R17-504M10) which could be used for that purpose (b).

Vorauswahl des zu verwendenden Kondensators aus dem Katalogsortiment: Der Katalogtyp 1000 μF 1000 V DC ist nur für einen maximalen Nennstrom von 80A ausgelegt **(a)**. Durch eine Aufteilung auf mehrere Kondensatoren, z.B. 2 \times 500 μF , lässt sich die Strombelastung je Kondensator reduzieren. Hier bietet sich der Typ 500 μF 1200 V (E63.R17-504M10) an **(b)**.

800								
U _N 10	00V DC	L	J _s 1500V		U _r 200V		J _i 1000V	U _{BB}
60	3.6				0.7	2.1	50 × 85	G1
80	4.6	63	12.3	20	0.9	2.8	55 × 85	D1
100	4.2		9.8	28	1.1	3.4	65 × 95	
150	2.3	36	7.3	43	1.7	5.2	75 × 105	L1
250	2.1	28	5.7	43	2.9	8.6	95 × 105	
470	2.0	20	3.4	al 43	5.4	16.1	95 × 176	L1
700	1.0	17	2.8	aJ 80	8.0		116 × 176	
1000	0.75	12	2.0	80	11	20 2)	116 × 245	C2
1200	0.65	9	2.0	80	9	16	116 × 245	C2
1500								

C _N (µF)	R _s (mΩ)		R _{th} (K/W)	I _{max} (A)	Î (kA)		D ₁ × L ₁ (mm)	Maßbild Design
U _N 12	00V DC		J _s 1800V		U _r 280V		U _i 1000V	UBB
40	5	80			0.6	1.7	50 × 85	
50	6.3	68	12.3	16	0.7	2.1	55 × 85	B1
75		58	9.8				65 × 95	
100	1.5	43	6.4	43	1.4	4.1	85 × 105	L1
160	1.3	34	5.7	43	7.2	6.6	95 × 105	
300	N 9	73	3.4	43	(b)⊤	12.4	95 × 176	L1
500	0.8	18	2.2	80	6.9		116 × 176	
750	0.7	14	2.0	80	10.3	20 21	116 × 245	C2

Now, the heat dissipation losses of the capacitor under the intended operating conditions need to be determined; the procedure is similar to that in example A:

Nun ist die Verlustleistung des Kondensators bei den beabsichtigten Einsatzbedingungen zu bestimmen; die Vorgehensweise ähnelt der in Beispiel A:

4

$$P_v = P_{vn} + P_{vp} = \hat{U}^2 \pi \cdot f_n \cdot C \cdot \tan \delta_n + I_{off}^2 \cdot R_s$$

 \hat{U} has to be defined as U/2 here. For I $_{\rm eff}$, the value calculated above is divided by two as current is diverted to two capacitors in parallel.

In our example, the power dissipation factor is $P_{_{V}} = P_{_{VD}} + P_{_{VR}} = 0.048~W + 4.85~W = 4.9~W~^{*}.$

The values $\tan\delta_0$ = 2 × 10⁻⁴ and R_s = 0.8 m Ω were taken from the E63 data charts

*
$$P_V = 22.5^2 \text{ V}^2 \cdot 3.1416 \cdot 300 \text{ Hz} \cdot 0.0005 \text{F} \cdot 2 \cdot 10^{-4} + 77.9^2 \text{A}^2 \cdot 0.0008 \Omega$$

= 0.048 W + 4.85 W = 4.9 W

By using the value of thermal resistance $R_{\rm th}$ taken from the capacitor chart we can calculate the temperature difference between the ambient temperature and the hottest spot inside the capacitor:

Für \hat{U} wird hier der Wert $U_{\rm r}/2$ verwendet. Für $I_{\rm eff}$ ist die Hälfte des oben berechneten Wertes einzusetzen, da sich der Strom jetzt auf zwei parallel geschaltete Kondensatoren aufteilt.

Es ergibt sich für den angegebenen Betriebsfall eine Verlustleistung von $P_v=P_{vD}+P_{vR}=0.048~W+4.85~W=4.9~W*,$ wobei für die Berechnung die Werte $tan\delta_0=2\cdot 10^{-4}\,und~R_S=0.8~m\Omega$ aus den Datentabellen E63 verwendet wurden.

Mit Hilfe des thermischen Widerstandes $\rm R_{th}$ aus der Kondensatorentabelle lässt sich die Temperaturdifferenz zwischen Umgebungstemperatur und dem heißesten Punkt im Kondensatorinneren ermitteln.

5

$$\Delta T = R_{th} \cdot P_{v} = 2.2 \text{ K/W} \cdot 4.9 \text{ W} = 11 \text{ K}$$

Two capacitors 500 μF 1200 V DC can be used for the intended application. The ambient temperature must not exceed 59.22°C.

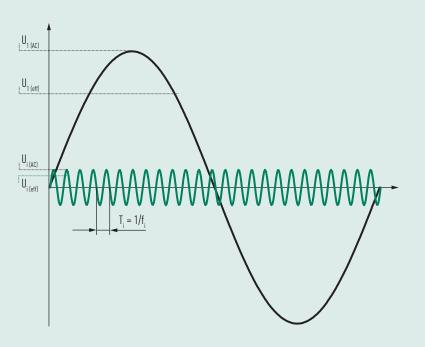
Für die geplante Anwendung können zwei Kondensatoren mit je 500 μ F 1200 V DC verwendet werden. Die Umgebungstemperatur darf dabei 59.22°C nicht übersteigen.

$$\Theta_{\text{U}} = \Theta_{\text{HOTSPOT}} - \Delta \text{T} = 59.22^{\circ}\text{C}$$

Determination of the Failure Rate Expected voltage and temperature conditions: Berechnung der Ausfallrate Geplantes Spannungs-/Temperaturspektrum des Kondensators:

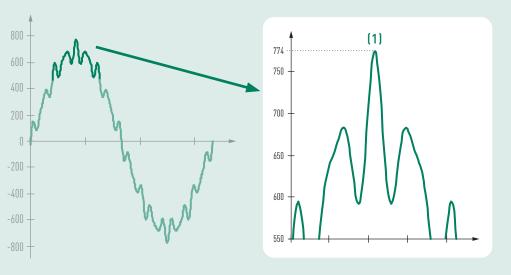
6

share of operation period Anteil an Betriebsdauer	operating voltage Betriebsspannung	$\Theta_{ ext{ambient}}$	$\Theta_{ ext{HOTSPOT}}$	U _B / U _N	FIT Rate*	FIT × share_Anteil
80 %	975 V	55 °C	66 °C	0.81	ca. 5	4
10 %	1000 V	55 °C	66 °C	0.92	ca. 15	1.5
10 %	1200 V	60 °C	71 °C	1.0	ca. 70	7
					total	ca. 13


^{*} taken from diagramm "50 FIT"_entnommen aus Diagramm "50 FIT"

Under these circumstances, the FIT rate is appox. 13, λ = 1.3 × 10⁻⁸ h⁻¹. This failure rate is valid for a reference period of 100.000 hrs and may rise afterwards.

Die FIT-Rate beträgt unter diesen Betriebsbedingungen 13, λ = 1.3 × 10⁻⁸ h⁻¹. Diese Ausfallrate gilt für einen Betrachtungszeitraum von 100.000 h und kann danach ansteigen.


C. AC Filter capacitors (calculation acc. to IEC 61071)

A capacitance of 3 \times 50 μF is required for a filter application in a 480 V 60 Hz mains which is distorted by 17^{th} (9%) and 25^{th} harmonic (6%). The peak value of the resulting voltage has been measured to be 774 V (1).

In einem Netz mit 480 V 60 Hz wird eine Kapazität von $3 \times 50~\mu\text{F}$ für ein Filter benötigt. Die Grundwelle wird durch die 17. (9%) und die 25. Oberwelle (6%) überlagert. Als Scheitelwert der resultierenden Spannung wurde 774 V gemessen (1).

For AC filter capacitors, the AC voltage rating U, AC is not determined by the rms value $U_{\mbox{\tiny eff'}}$ but by the peak value of the resulting voltage (as measured by an oscilloscope or calculated from available harmonic data.) In any case, U, AC must be above.

A three-phase AC-capacitor from the E62.*** series shall be selected. The voltage rating of 850 V would be appropriate (E62.R16-503L30). (a)

3 × 100	3 × 0.6	_ (a)		3 × 43			116 × 164	
U _N 8	850V A	C (a)		15 600V		U _s 2000)V	U BB 12
3 × 6.7	3 × 2	190	7.6	3 × 16		1.5	50 × 151	D3
3 × 11	3 × 1.8	150	6.9	3 × 16	0.5	2.2	55 × 151	D3
3 × 14	3 × 1.3		4.7	3 × 43	0.6	3	75 × 164	L3
3 × 25	3 × 1.1	, 90	41	3 × 43	10	5	85 × 164	L3
3 × 37.5	3 × 0.) ₈₀	₂ lc	3×43	lfJ 5	4.5	100 × 164	L3
3 x 50	3 x 0.4	60	3.0	3 x 43	2	8	116 × 164	L3
U _N 10	80V AC		U _{rms} 70	60V	Us	2300V	U _{BB}	1635\
3 × 4.7	3 × 1.8	230	7.6	3 × 16	0.5	3	50 × 151	D3
3 × 5.0								

Ausschlaggebend für die Bestimmung der Kondensatornennspannung $U_{_{\rm N}}$ AC ist nicht der Effektivwert $U_{_{\rm off}}$, sondern der Scheitelwert der Spannung (gemessen mit Oszilloskop bzw. berechnet aus vorhandenen Angaben zu überlagerten Oberschwingungen); U"AC muss in jedem Fall darüber liegen. Es ist ein dreiphasiger Wechselspannungskondensator aus der Reihe E62.*** zu wählen. Als geeignete Nennspannung kommt 850 V in Betracht (E62.R16-503L30). (a)

Crucial for the operating life of a filter capacitor is the hotspot temperature $\Theta_{\mbox{\tiny HOTSPOT}}.$ For determination of the hotspot temperature, the exact harmonic

load must be calculated using the formulas and values stated below. 1)

1) An alternative calculation method is shown in our catalogue for power factor correction components.

Maßgebend für die Lebensdauer eines Wechselspannungsfilterkondensators ist seine Hotspot–Temperatur $\Theta_{ ext{HOTSPOT}}$. Für ihre Bestimmung ist die konkrete Oberwellenbelastung wichtig, welche mit Hilfe der nachfolgenden Formeln und Werte berechnet werden kann. 1)

¹⁾ Alternativ zu den hier dargestellten Berechnungen kann auch die in unserem Katalog für Komponenten zur Blindleistungskompensation angeführte Methode verwendet werden.

First, the following values need to be determined for each occurring frequency f_:.

Calculation of the capacitor current

Zunächst sind folgende Werte für jede auftretende Frequenz f, zu bestimmen.

Berechnung des Kondensatorstromes

 $I_i = U_i \cdot 2\pi f_i \cdot C$

U_i = voltage of the respective harmonic Spannung der jeweiligen Oberwelle

C = total capacitance (3-phase capacitors: 3 \times C $_{\rm phase}$) Gesamtkapazität (bei dreiphasigen Kondensatoren $3 \times \mathbb{C}_{\scriptscriptstyle{\text{nhose}}}$)

f; = harmonic frequency_Oberwellenfrequenz

Determination of the reactive power of the capacitor

 $Q_i = U_i \cdot I_i$

 Q_i = reactive capacitor power at harmonic frequency f_i Kondensatorblindleistung bei Oberwellenfrequenz f,

SELECTION BERECHNUNGSBEISPIELE AC-FILTER

Calculation of the dielectric power losses

Berechnung der dielektrischen Verluste

$$P_{vo} = Q_i \cdot tan \delta_0$$

$$\tan \delta_{\rm n} = 2 \times 10^{-4}$$

Calculation of the current losses

Ermittlung der Stromwärmeverluste

$$P_{VR} = I_i^2 \cdot R_S$$

R_s = equivalent series resistance of the capacitor, per phase Serienwiderstand des Kondensators, je Phase **(b)**

Finally, all values must be added together:

Im Anschluss sind die Teilwerte zu addieren:

Oberwellen Harmonics	U _{i (eff)} (V)	f _{i (eff)} (Hz)	l _, (A)	Q _i (kvar)	P _{vD} (W)	P _{vr} (V)	P _v (W)
H1	480	60	27.1	13.03	2.61	0.52	3.12
H17	43	1020	41.5	1.79	0.36	1.21	1.57
H25	24	1500	33.9	0.81	0.16	0.81	0.97
Σ			60.1*	15.64	3.13	2.53	5.66

*
$$I_{\text{total}} = \sqrt{\sum_{i=1}^{n} I_i^2}$$

Calculation of the build up of heat inside the capacitor

Berechnung der Eigenerwärmung des Kondensators

$$\Delta T = P_v \cdot R_{th} = 5.7 \text{ W} \cdot 3 \text{ K/W} = 17 \text{ K (c)}$$

Determination of the maximum admissible ambient temperature

Bestimmung der maximal zulässigen Umgebungstemperatur

$$\Theta_{\text{AMBIENT}} = \Theta_{\text{HOTSPOT}} - \Delta T = 85^{\circ}\text{C} - 17 \text{ K} = 68^{\circ}\text{C} \text{ (d)}$$

Determination of the Failure Rate Expected voltage and temperature conditions:

Berechnung der Ausfallrate Geplantes Spannungs-/Temperaturspektrum des Kondensators:

share of operation period Anteil an Betriebsdauer	operating voltage Betriebsspannung	Θ _{ambient}	Θ _{HOTSPOT}	U _B / U _N	FIT Rate*	FIT × share_Anteil
50 %	800 V	50 °C	67 °C	0.94	ca. 40	20
20 %	850 V	50 °C	67 °C	1.0	ca. 70	14
20 %	800 V	60 °C	77 °C	0.94	ca. 450	90
10 %	850 V	65 °C	82 °C	1.0	ca. 4000	400
					total	524

^{*} taken from diagramm "100 FIT"_entnommen aus Diagramm "100 FIT"

The FIT rate for this example is 500, $\lambda = 5 \times 10^{-7} \, h^{-1}$. The comparably high failure rate in this case is resulting from the share of time when the capacitor is operated with high voltage at a temperature close to the upper limit. This failure rate is vaild for a reference period of 100.000 hrs and may rise afterwards.

Für dieses Beispiel beträgt die FIT-Rate ca. 500, $\lambda=5\times10^{-7}\,h^{-1}$. Die relativ hohe Ausfallrate resultiert in diesem Fall aus dem Anteil, bei dem der Kondensator mit hoher Spannung in der Nähe der oberen Grenztemperatur betrieben wird. Die Ausfallrate gilt für einen Betrachtungszeitraum von 100.000 h und kann danach ansteigen.

Finally, the current load capability of the terminals should be verified:

Abschließend sollte die Stromtragfähigkeit der Anschlüsse überprüft werden:

I ph.:
$$I_{eff} = \sqrt{\sum_{i=1}^{n} I_i^2}$$
 3 ph.: $I_{eff} = \sqrt{\sum_{i=1}^{n} I_i^2}$

In the example above, the current per phase is 34.7 A which is well within the permitted rating for type E62.R16-503L30 (acc. to catalogue 43 A). **(f)**

Für das vorliegende Beispiel ergibt sich ein Strom von 34.7 A je Phase, dies liegt innerhalb des zulässigen Maximalstromes für den Typ E62.R16-503L30 (laut Katalog 43 A). **(f)**

If the calculated power dissipation is too high

- reduction of the permitted ambient temperature acc. to the diagram on page 17/18, leading to an increase in the permitted power dissipation, forced cooling
- connection of a larger number of capacitors with smaller capacitance values (increase of the surface area and improved heat dissipation)
- application of capacitors with a rated voltage higher than required by the operating voltage (larger dimensions, greater surface area and power dissipation)
- reduction of the series resistance R_s by changes to the capacitor's internal construction.

Mögliche Lösungen bei zu hoher Verlustleistung

- Reduzierung der zulässigen Umgebungstemperatur entsprechend Diagramm auf Seite 17/18, damit Erhöhung der zulässigen Verlustleistung, Anwendung von Zwangskühlung
- Parallelschalten von mehreren Kondensatoren kleinerer Kapazität (Oberflächenvergrößerung für bessere Abführung der Verlustwärme)
- Verwendung von Kondensatoren h\u00f6herer Nennspannung, als die Betriebsspannung es erfordert (gr\u00f6ßere Abmessungen, dadurch gr\u00f6ßere Oberf\u00e4\u00e4che und Abf\u00fchrung von Verlustleistung)
- Beeinflussung des Serienwiderstands R_s über Änderungen des inneren Aufbaus der Kondensatoren durch den Hersteller

MOUNTING AND OPERATING INSTRUCTIONS

VORSCHRIFTEN ZU EINBAU UND BETRIEB

Safe operation of the capacitors can be expected only if all electrical and thermal specifications as stated on the label, in the data sheets or catalogues and the following instructions are strictly observed.

Grundsätzlich ist ein sicherer Betrieb der Kondensatoren nur gewährleistet, wenn die elektrischen und thermischen Grenzwerte gemäß Typenschild, Datenblatt bzw. Katalog und die nachfolgenden An-weisungen eingehalten werden.

ELECTRONICON does not accept responsibility for whatever damage may arise out of a non-observance.

ELECTRONICON übernimmt keine Verantwortung für Schäden, welche aus einer Nichteinhaltung erwachsen.

Please mind the recommendations given in the "Joint Safety Data Sheet by the Power Capacitor Manufacturers organized in the ZVEI – Zentralverband Elektrotechnik und Elektronik e.V." (Central Association of Electrotechnics and Electronics) issued March, 2007.

Bitte beachten Sie die Hinweise im "Gemeinsamen Sicherheitsdatenblatt der im ZVEI – Zentralverband Elektrotechnik und Elektronik e.V." – organisierten Hersteller von Starkstromkondensatoren", Ausgabe März 2007.

Mounting Position

Einbaulage

MKP-Kondensatoren mit flüssiger bzw. viskoser Füllung müssen stehend mit dem Anschlusselement nach oben eingebaut werden. Bitte wenden Sie sich an uns, wenn eine andere Einbaulage erforderlich ist. Kondensatoren mit Gas- oder ausgehärteter Harzfüllung können ohne Einschränkung in jeder Lage eingebaut werden.

Mounting Location/Cooling

The useful life of a capacitor may be reduced dramatically if exposed to excessive heat. Typically an increase in the ambient temperature of 7K will halve the expected life of the capacitor, or double the FIT-rate.

To avoid overheating the capacitors must be allowed to cool unhindered and should be shielded from external heat sources.

If attenuating circumstances give cause for doubt, special tests should be conducted to ensure that the permitted maximum temperature of the capacitor is not exceeded even under the most critical ambient circumstances. It should be noted that the internal heat balance of large capacitors is only reached after a couple of hours.

Einbauort/Kühlung

Die Lebensdauer eines Kondensators kann durch übermäßige Wärme-einwirkung erheblich verringert werden. Im allgemeinen führt eine Erhöhung der Umgebungstemperatur um 7K zu einer Verringerung der Lebensdauer des Kondensators um 50 % bzw. einer Verdopplung der FIT-Rate.

Es ist daher zu beachten, dass die Kondensatoren die auftretende Verlustwärme ungehindert abführen können, so dass die obere Grenztemperatur an keiner Stelle des Gehäuses überschritten wird. Insbesondere ist zu vermeiden, dass die Kondensatoren von fremden Wärmequellen zusätzlich erwärmt werden. In Zweifelsfällen ist durch eine Typprüfung zu überprüfen, dass unter den ungünstigsten Umgebungsbedingungen die zulässige Kondensatortemperatur nicht überschritten wird. Dabei ist zu beachten, dass sich das Wärmegleichgewicht bei großvolumigen Kondensatoren erst nach mehreren Stunden einstellt.

Give at least 20 mm clearance between the capacitors for natural or forced ventilation.

Do not place the capacitors directly above or next to heat sources such as detuning or tuning reactors, bus bars, etc.

Zwischen den und um die Kondensatoren herum sollten mindenstens 20 mm Platz für natürliche oder Zwangslüftung belassen werden. Bringen Sie den Kondensator nie direkt neben oder über Wärmequellen, wie Drosseln u.ä. an.

Vibration Stress According to DIN IEC 68-2-6

Schwingungsbelastung nach DIN IEC 68-2-6

Die Kondensatoren genügen der Prüfung FC nach DIN IEC 68-2-6 mit folgenden Werten:

capacitor weight Masse des Kondensators	test duration Beanspruchungsdauer	frequency range Frequenzbereich	max. acceleration Max. Beschleunigung	max. displacement amplitude Max. Auslenkung
< 0.5 kg	30 cycles Zyklen	10 500 Hz	50 m/s²	0.35 mm
0.5 3 kg	30 cycles Zyklen	10 500 Hz	10 m/s²	0.075 mm
> 3 kg	information available on request auf Anfrage			

All cylindrical capacitors can be fixed sufficiently using the mounting stud at the base of the can unless described otherwise in special data sheets. It is recommended to insert the washer which is delivered together with the mounting nut before fixing the nut.

Prinzipiell ist für alle Kondensatoren die Befestigung mittels Bodenbolzen ausreichend. Abweichungen davon werden in separaten Datenblättern dargestellt. Vor dem Befestigen der Mutter ist die Zahnscheibe, die zusammen mit der Befestigungsmutter geliefert wird, aufzuziehen.

M8	5 Nm
M12	15 Nm

Permitted max. torque for the mounting studs

Zulässiges Drehmoment für die Bodenschrauben

Connection

The soldering must not be exposed to excessive heat. It is not recommended to solder cables to the terminals. Where possible use appropriate tab connectors to connect the cables.

Do not bend or turn or move the connecting terminals and the tab connectors in any way.

Connection at threaded studs shall be made between two nuts. During connection the lower nut shall be backed up to avoid any transmission of the torque above the a.m. figures to the ceramic body.

M6	2 Nm
M8	4 Nm
M10	9 Nm
M12	14 Nm
M5 Internal thread Innengewinde	2 Nm
M6 Internal thread Innengewinde	4 Nm
M8 Internal thread Innengewinde	7 Nm
Screw terminal Reihenklemme Type K (M4)	1.2 - 2 Nm
Screw terminal Reihenklemme Type L (M5)	2.5 - 3 Nm
Screw terminal Reihenklemme Type M (M6)	3.2 - 3.7 Nm

Anschluss

Die Lötstellen dürfen nicht übermäßiger Hitze ausgesetzt werden. Es ist nicht empfehlenswert, die Kabel mit den Anschlüssen zu verlöten. Benutzen Sie, wo möglich, passende Steckverbindungen, um die Kabel anzuschließen.

Die Anschlussstücke und Flachstecker dürfen nicht gebogen, gedreht oder in irgendeiner anderen Form bewegt werden.

Der Anschluss an Anschlussbolzen muss zwischen zwei Muttern hergestellt werden. Dabei muss die untere Mutter gegengehalten werden, so dass kein Drehmoment oberhalb der zulässigen Werte auf den Keramikkörper übertragen wird.

All CAPAGRIPTM terminals are equipped with PROZIDRIVE screws (PZ 2). Use of improper screwdrivers (e.g. PHILLIPS system) may damage the screws and impair reliable fixation.

Alle CAPACRIP™ Anschlüsse enthalten PROZIDRIVE-Schrauben (PZ 2). Unpassende Schrauber (z.B. PHILLIPS-System) können die Schrauben beschädigen und die zuverlässige Befestigung gefährden.

Recommended torque for screw connections

Empfohlene Drehmomente für die Anschlussarten

Capacitors with break-action mechanism shall be connected with sufficiently flexible leads to permit the functioning of the mechanism, and sufficient clearance for expansion of the capacitor case must be accommodated above the terminals. Depending on the specific dimensions of the capacitors the case could expand between 5 and 25 mm.

- The capacitors shall only be connected with flexible cables or elastic conner hands
- The folded crimps must not be held by retaining clamps.
- ATTENTION: Required minimum clearances according to applicable voltage category must be maintained even after prolongation of the can!

The hermetic sealing of the capacitors is extremely important for a long operating life and for the correct functioning of the break action mechanism. Please pay special attention not to damage the following critical sealing points:

- · the bordering of the lid
- the connection between screw terminal and lid (design K, L, M)
- the rubber seal at the base of the tab connectors (design D, E)
- the soldering at the base of the tab connectors (design B, D, E)
- the ceramic insulators (design C)

Do not hit the bordering and the connecting terminals with heavy or sharp objects or tools (e. g. hammer, screw driver).

Discharge

If there is no discharge of the capacitors provided by external circuits, the capacitors should be provided with discharge resistors. In any event, the poles of the capacitors must be short-circuited before being touched. Note that capacitors with nominal voltages above 750 V in particular may regenerate new voltage at their terminals after having been short-circuited just for short periods. This condition results from the internal series connection of the capacitor elements and will be avoided by storing them permanently short-circuited.

Earthing

Capacitors with a metal case must be earthed at the mounting stud or by means of a separate metal strap or clamp.

Der Anschluss von Kondensatoren mit Überdrucksicherung muss mit flexiblen Leitern erfolgen, um die Funktion der Überdruck-Abreißsicherung nicht zu beeinträchtigen. Über den Anschlüssen ist genügend Platz für die Ausdehnung des Gehäuses im Fehlerfall zu lassen. Die Gehäuseverlängerung beträgt je nach Baugröße 5 bis 25 mm.

- Schließen Sie diese Kondensatoren nur mit flexiblen Kabeln oder elastischen Kupferbändern an.
- Befestigen Sie keine Klemmen an der Sicke.
- ACHTUNG: Mindestluftstrecken entsprechend der jeweiligen Spannungskategorie müssen auch nach dem Ansprechen der Sicherung gewährleistet sein.

Für eine lange Einsatzdauer und das fehlerfreie Funktionieren der Überdrucksicherung ist eine hermetische Abdichtung der Kondensatoren von höchster Bedeutung. Es ist darauf zu achten, dass folgende kritischen Dichtungsstellen nicht beschädigt werden:

- die Deckelkante
- die Verbindung zwischen Schraubanschluss und Deckel (Bauform K, L, M)
- die Gummidichtung unterhalb des Flachsteckers (Bauform D, E)
- die Lötstelle im unteren Teil des Flachsteckers (Bauform B, D, E)
- die Keramikisolatoren (Bauform C)

Bearbeiten Sie die Kanten und die Anschlussteile nicht mit schweren oder scharfen Objekten bzw. Werkzeugen (z. B. Hammer, Schraubendreher).

Entladung

Falls eine Entladung beim Abschalten der Kondensatoren nicht über Teile der Schaltung gewährleistet ist, so sind Entladewiderstände vorzusehen. Vor dem Berühren der Anschlüsse sind diese in jedem Fall erst kurzzuschließen. Insbesondere bei Kondensatoren mit Nennspannungen über 750 V ist zu beachten, dass sich nach einem kurzzeitigen Kurzschließen durch Ladungsumverteilung erneut Spannungen an den Anschlüssen aufbauen können (bedingt durch die Reihenschaltung von Kondensatorenelementen). Nicht verschaltete Kondensatoren sind daher möglichst immer kurzgeschlossen aufzubewahren.

Erdung

Kondensatoren mit Metallgehäuse sind bei Einbau zu erden. Hierzu kann die Bodenschraube oder eine Schelle verwendet werden.

Environmental Compatibility

Our capacitors do not contain PCB, solvents, or any other toxic or banned materials. They do not contain hazardous substances acc. to «Chemische Verbotsverordnung» (based on European guidelines 2003/53/EG and 76/769/EWG), «Gefahrstoffverordnung» (GefStoffV) and «Bedarfsgegenstaendeverordnung (BedGgstV)».

Not classified as «dangerous goods» acc. to transit rules. The capacitors do not have to be marked under the Regulations for Hazardous Goods. They are rated WGK 0 (water risk category 0 «no general threat to water»).

No danger for health if applied properly. In case of skin contact with filling liquids, clean with water and soap.

All capacitors manufactured after 1st January, 2006 are made with lead-free solder tin.

Disposal

The impregnants and filling materials contain vegetable oil, polyurethane mixtures or nitrogen. A data sheet about the impregnant utilised can be provided by the manufacturer on request.

We recommend disposing of the capacitors through professional recycling centres for electric/electronic waste.

The capacitors can be disposed of as follows:

- Disposal acc. to European Waste Catalogue 160205 (capacitors filled with plant oil/resin).
- Gas filled capacitors do not require any special treatment.
- Solid filling materials: acc. to EWC 080404 («solidified adhesives and sealants»).
- Liquid filling materials which may have emerged from the capacitor shall be absorbed by proper granules and disposed of in accordance with European Waste Catalogue 080410 (PUR resin residues, not solidified).
- Caution: When touching or wasting capacitors with activated breakaction mechanism, please consider that even after days and weeks these capacitors may still be charged with high voltages!

Consult your national rules and restrictions for waste and disposal.

Umweltverträglichkeit

Unsere Kondensatoren enthalten kein PCB, keine Lösemittel, oder sonstige giftige oder verbotene Stoffe, keine gefährlichen Inhaltsstoffe gemäß Chemikalien-Verbotsverordnung (ChemVerbotsV), Gefahrstoffverordnung (GefStoffV) und Bedarfsgegenstände-Verordnung (BedGgstV).

Sie stellen kein Gefahrgut im Sinne der Transportvorschriften dar. Es ist keine Kennzeichnung nach Gefahrstoffverordnung erforderlich. Sie unterliegen nicht der TA-Luft und auch nicht der Verordnung für brennbare Flüssigkeiten (VbF). Sie sind eingestuft in die WGK 0 (Wassergefährdungsklasse Null, im Allgemeinen nicht wassergefährdend).

Alle ab 01.01.2006 gefertigten Kondensatoren sind mit bleifreiem Lötzinn gearbeitet.

Entsorgung

Die verwendeten Füllmittel bestehen aus Pflanzenöl, Polyurethan-Mischungen oder Stickstoff. Ein Sicherheitsdatenblatt über die Füllmittel kann bei Bedarf angefordert werden.

Die Kondensatoren können wie folgt entsorgt werden:

- Entsorgung nach Abfallschlüssel 160205 (Kondensatoren mit Pflanzenöl/ Gießharz gefüllt).
- Gasgefüllte Kondensatoren bedürfen keiner besonderen Behandlung.
- ausgehärtete Füllmittel: nach Abfallschlüssel-/EAK-Nummer 080404 (PUR-Harzrückstände, ausgehärtet).
- Eventuell ausgetretene Füllmittel sind mit ölbindenden Granulaten aufzunehmen und nach Abfallschlüssel 080410 (PUR Harzrückstände, nicht ausgehärtet) zu entsorgen.
- Vorsicht beim Berühren und Entsorgen von Kondensatoren, bei denen die Überdrucksicherung angesprochen hat! Noch nach Tagen und Wochen können gefährliche Spannungen auftreten.

Grundsätzlich sind die jeweils gültigen nationalen Vorschriften zu beachten.

General Safety Advices for Power Capacitors

General safety advices of power capacitor manufacturers who are members of the ZVEI - German Electrical and Electronic Manufacturers' Association

1. Area of Validity

These safety advices apply to the following power capacitors and standards. Their purpose is to describe the state of technology which usually must be adhered to by all relevant supplier and service contracts.

-		
1.	Power capacitors for reactive power compensation (PFC = Power Factor Compensation) up to 1000 V	IEC / DIN-EN 60831 and 60931
2	Power capacitors for reactive power compensation (PFC) above 1000 V	IEC / DIN-EN 60871
3.	Power capacitors for inductive heat generation (PFC)	IEC / DIN-EN 60110
4.	Capacitors for power electronics (PEC)	IEC / DIN-EN 61071
5.	Capacitors for railroad applications	IEC / DIN-EN 60881
6.	Lighting capacitors (AC)	IEC/DIN-EN 61048/49
7.	Motor capacitors (AC)	IEC / DIN-EN 60252

II. General Rules of Safety

Since power capacitors are electrical energy storage devices, they must always be handled with caution. Even after being turned off for a longer period of time, they can still contain hazardously high voltages (danger of death). The same applies to all system components and devices which have an electrically conductive connection to the capacitor. The safety rules of electrical good practice must always be complied with when handling voltage-conducting components in electrical systems.

III. General Conditions for Storage and Use

- The installation, application and maintenance notes of the manufacturer and the relevant standards must always be compiled with.
- Capacitors must never be stored or used outside the specified temperature ranges.
- Capacitors may not be stored or operated in corrosive atmospheres, particularly not when chlorides, sulfides, acids, tye, salts, organic solvents or similar substances are present.
- In dust and dirt-prone environments, regular checks and maintenance (particularly of the connection terminals and insulators) are

- absolutely necessary to prevent creation of creepage distances between potential-conducting components among themselves and/or to the protective conductor/ground.
- The maximum temperatures (including inherent heat), voltages, currents, power, reactive power, thermal resistances, frequencies, discharge times and switching frequencies specified in the data sheet must be adhered to.
- A means of sufficient dissipation of heat loss (fan, cooling) or escaping gases in case of malfunction must be provided. Required minimum distances (e.g., to sources of heat) must be adhered to.
- Specified torques for electrical connections and mounting elements must be adhered to.
- Mechanically or electrically damaged, leaky or otherwise damaged capacitors may not be used or continue to be used.
- Existing protective devices of the capacitors may not be manipulated, removed or impaired in their function.

IV. Internal Protective Devices

 The following table gives an overview of the known internal protective devices:

Protective Device/	Application Area		
Protective Mechanism	PEC	PFC	AC
Without protective devices	×		
Exclusively self-healing	×	×	(X)
Singly or in combination;			
Improved self-healing	×		
Overpressure interrupter	×	×	. *
Overpressure switch:	×	×	×
Overpressure visive	×	×	
Overpressure membrane	×		
Reinforced housing	×	×	
Sagmented film	×		×
Winding fuse		×	
Thermal fuse			- 80

Internal protective devices offer basic protection against certain internal faults, aging and overload.

ZVEI - German Electrical and Electronic Manufacturers' Association - Stresemannallee 19 - 60596 Frankfurt am Main - Germany Power Capacitors Division

phone: +49.69.6302-491 - fax: +49.69.6302-413 - mail: starkstromkondensatoren@zvei.org - www.zvei.org

- Internal protective devices alone are not sufficient to prevent all conceivable dangers in case of malfunction. The so-called self-healing capability is not the same as fall safe system stability.
- 4. Depending on their protective mechanism, internal protective devices are subject to technical and functional limits which when exceeded will definitely cause malfunctions. Such violations can be: excess temperature, overvoltage, wrong application, wrong installation, faulty maintenance, mechanical damage, operation outside the technical limits of the specification.
- Most internal protective devices can interrupt the voltage only within the capacitor. They are not fuses in the classical sense such as cable or device fuses which interrupt the voltage in front of the faulty system component.

V. Risk Factors for the Capacitor

The most frequent risk factors which cause capacitor damage and possibly also the failure of the protective devices are:

- Exceeding the permissible temperature on the capacitor surface (an excess temperature of 7 °K cuts life expectancy in half)
- Voltage increases, overcurrents and high turn-on currents even if they only occur briefly or cyclically (an overvoltage of 8 % cuts life expectancy in half)
- Network harmonics, resonances with harmonics or flicker even when they occur only briefly or cyclically
- Aging of the lighting equipment and consequential excess temperature or high UV stress.
- Failure of other components in a common switch connection and consequential overvoltages or overcurrents
- Interaction with other reactive power elements, also parasitic capacitances or inductivities in common switch connections
- Even if the test based on the capacitor standard is passed, this does not ensure comprehensive protection against all possible overloading.

VI. Risks When a Fault Occurs

- Power capacitors can be a significant risk in case of failures due to their stored energy and/or their properties during operation in networks with high short-circuits power.
- Power capacitors can actively fall when internal or external protective devices are missing, incorrectly dimensioned or have failed. They can burst, burn or, in extreme cases, explode.
- The gases (e.g., hydrocarbons as decomposition products of the organic insulating materials used) released in case of damage are flammable and can create explosive mixtures. The fire load of a power capacitor is approx. 40 MJ/kg.

VII. Risk Minimization

- The capacitor manufacturer cannot predict all
 possible stresses which a power capacitor can be
 subjected to and which must be provided for in
 the design. This means that the user carries
 crucial co-responsibility here. Alone for this
 reason, safety and quality should be the top
 criteria when a capacitor is selected. This is why
 we urgently recommend the use of capacitors
 with good internal protective devices.
- Before designing the application, capacitors must be checked for their suitability for this particular application. All influences (parameters) must be considered. Unexamined use in an application may have serious consequences.
- Particularly with sensitive applications, the internal protective devices of the capacitors should be supplemented by the user with suitable external protective measures. External protective measures are even mandatory when capacitors are used without internal protective devices.
- When power capacitors are used, you must always provide suitable measures to eliminate possible danger to humans, animals and property both during operation and when a failure occurs. This applies to capacitors without and with protective devices.
- The power capacitor manufacturers organized in the ZVEI will be glad to give users preliminary advice already before planning of the application begins and provide concrete application recommendations.

Status: March 2007

Responsible for content: ZVEI - German Electrical and Electronic Manufacturers' Association Power Capacitors Division Stresemannallee 19 60596 Frankfurt am Main Phone: 069 6302 –440

Fax: 069 6302 - 413 EMail: stein@zvei.org

Allgemeine Sicherheitshinweise Starkstromkondensatoren

Gemeinsame Sicherheitshinweise der im ZVEI - Zentralverband Elektrotechnikund Elektronik e. V. - organisierten Hersteller von Starkstromkondensatoren

Geltungsbereich

Diese Sicherheitshinweise gelten für die im Folgenden genannten Starkstromkondensatoren und Normen. Damit soll der Stand der Technik, der im Regelfall bei allen einschlägigen Liefer- und Leistungsverträgen einzuhalten ist, beschrieben werden.

1.	Leistungskondensstoren für Blindstromkompensati- on (PFG) bis 1000 V	IEC / DIN-EN 60831 und 60931
2.	Leistungskondensatoren för Blindstromkompensati- on (PFC) über 1000 V	IEC / DIN-EN 60871
3.	Leistungskondensatoren für induktive Wärmeer- zeugung (PFC)	IEC / DIN-EN 60110
4,	Kondensatoren für die Leistungselektronik (PEC)	IEC / DIN-EN 61071
5,	Kondensatoren für Bahn- anwendungen (PEC)	IEC / DIN-EN 60881
6.	Leuchtenkondensatoren (AC)	IEC / DIN-EN 61048/49
7,	Motorkondensatoren (AC)	IEC / DIN-EN 60252

II. Allgemeine Sicherheitsregeln

Starkstromkondensatoren sind elektrische Ladungsspeicher und deshalb stets mit Vorsicht zu handhaben. Sie können auch nach dem Abschalten über längere Zeiträume noch mit lebensgefährlich hohen Spannungen geladen sein. Gleiches gilt für alle Anlagenteile und Geräte, die in elektrisch leitender Verbindung zum Kondensator stehen, Grundsätzlich sind die allgemeinen Regeln der Elektrotechnik für den Umgang mit spannungsführenden Teilen in elektrischen Anlagen zu beachten.

Allgemeine Lager- und Einsatzbedingungen

- 1. Grundsätzlich sind die Montage, Applikationsund Wartungshinweise des Herstellers und die einschlägigen Normen zu beachten.
- 2. Kondensatoren dürfen zu keinem Zeitpunkt außerhalb der spezifizierten Temperaturbereiche gelagert oder eingesetzt werden.
- Kondensatoren d
 ürfen nicht in korrosiver Atmosphäre gelagert oder betrieben werden, insbesondere nicht wenn Chloride, Sulfide, Säuren, Laugen, Salze, organische Lösemittel oder ähnliche Substanzen auftreten.

- 4. In staub- und schmutzgefährdeter Umgebung ist eine regelmäßige Kontrolle und Wartung, insbesondere der Anschlussklemmen und Isolatoren, unbedingt erforderlich um eine Kriechwegebildung zwischen potentialführenden Teilen untereinander und/oder zum Schutzleiter/Erde zu verhindern.
- 5. Die im Datenblatt angegebenen maximalen Temperaturen (incl. Eigenerwärmung), Spannungen, Ströme, Leistungen, Blindleistungen, thermische Widerstände, Frequenzen, Entladezeiten und Schalthäufigkeiten sind einzu-
- 6. Für ausreichende Abführung der Verlustwärme (Belüftung, Kühlung) oder im Fehlerfall austretende Gase ist Sorge zu tragen. Geforderte Mindestabstände z. B. zu Wärmeguellen sind einzuhalten.
- 7. Angegebene Drehmomente für elektrische Anschlüsse und Befestigungselemente sind einzu-
- 8. Mechanisch oder elektrisch beschädigte, undichte oder anderweitig vorgeschädigte Kondensatoren dürfen nicht eingesetzt oder weiterverwendet. werden.
- Vorhandene Schutzeinrichtungen der Kondensatoren dürfen nicht manipuliert, entfernt oder in ihrer Funktion beeinträchtigt werden.

IV. Interne Schutzeinrichtungen

 Die folgende Tabelle gibt einen Überblick über die bekannten internen Schutzeinrichtungen:

Schutzeinrichtung/	Anwendungsbereich		ereich
Schutzmechanismus	PEC	PFC	AC
Ohne Schutzeinrich- tungen	*		,-
Ausschließlich Selbst- heilung	*	×	×
Einzeln oder in Kombi- nation:			
Verbesserte Seibsthei- lung	*		
Überdruckunterbrecher	(X	x:	× 3
Überdruckschafter	×	×	- *
Überdruckventil	×	×	
Überdruckmembrane.	×		
Verstärktes Gehäuse	×	*:	
Segmentierter Film.	×		×
Wickelsicherung		×	
Thermosicherung			×

2. Interne Schutzeinrichtungen bieten einen Basisschutz bei bestimmten inneren Fehlern, Alterungserscheinungen und Überlastfällen.

ZVEI - Zentralverband Elektrotechnik- und Elektronikindustrie e.V. - Stresemannallee 19 - 60596 Frankfurt am Main Fachiverband Starkstromkondensatoren

Fon: 069 6302-440 • Fax: 069 6302 413 • Mail: starkstromkondensatoren@zvei.org • www.zvei.org

- 3. Interne Schutzeinrichtungen sind allein nicht ausreichend, um alle im Fehlerfall denkbare Gefahren abzuwenden. Die so genannte Selbstheilfähigkeit darf nicht mit Ausfallsicherheit gleichgesetzt werden.
- Interne Schutzeinrichtungen unterliegen, abhängig vom Schutzmechanismus, technischen und funktionellen Grenzen, deren Überschreitung zwangsläufig zu Fehlern führt. Solche Überschreitungen können sein: Übertemperatur, Überspannung, falsche Applikation, falsche Installation, mangelhafte Wartung, mechanische Beschädigung, Betrieb außerhalb der technischen Grenzen der Spezifikation.
- 5. Die meisten internen Schutzeinrichtungen können die Spannung nur innerhalb des Kondensators unterbrechen. Sie sind keine Sicherungen im klassischen Sinne wie Leitungs- oder Geräteschutzsicherungen, die die Spannung vor dem fehlerhaften Anlagenteil unterbrechen.

V. Risikofaktoren für den Kondensator

Die Risikofaktoren, die am häufigsten zu Kondensatorschäden und möglicherweise auch zum Versagen der internen Schutzeinrichtungen führen, sind:

- Überschreiten der zulässigen Temperatur an der Kondensatoroberfläche (eine Übertemperatur von 7 °K halbiert die Lebenserwartung)
- Spannungserhöhungen, Überströme und hohe Einschaltströme, auch wenn sie nur kurzzeitig oder periodisch auftreten (eine Überspannung von 8 % halbiert die Lebenserwartung)
- 3. Netzoberschwingungen, Resonanzen mit Oberschwingungen oder Flicker, auch wenn sie nur kurzzeitig oder periodisch auftreten.
- Alterungserscheinungen an Leuchtmitteln und damit verbundene Übertemperatur oder hohe UV-Belastung
- 5. Austall anderer Bauelemente in einer gemeinsamen Schaltung und damit verbundene Überspannungen oder Überströme
- Wechselwirkungen mit anderen Blindleistungselementen, auch parasitären Kapazitäten oder Induktivitäten, in gemeinsamen Schaltungen
- 7. Die bestandene Prüfung nach Kondensatornorm garantiert keine umfassende Sicherheit gegen Überlastungsmöglichkeiten.

VI. Risiken im Fehlerfall

- Starkstromkondensatoren k\u00f6nnen aufgrund ihrer. gespeicherten Energie und/oder ihrer Eigenschaften beim Betrieb in Netzen mit hohen Kurzschlussleistungen im Fehlerfall ein erhebliches Risiko darstellen.
- Starkstromkondensatoren k\u00f6nnen bei fehlenden, falsch dimensionierten oder versagenden internen oder externen Schutzeinrichtungen aktiv ausfallen. Sie können platzen, brennen oder im Extremfall explodieren.
- 3. Im Schadensfall austretende Gase (z. B. Kohlenwasserstoffe als Zersetzungsprodukte der eingesetzten organischen Isoliermaterialien) sind

brennbar und können explosive Gemische ergeben. Die Brandlast eines Starkstromkondensators beträgt ca. 40 MJ/kg.

VII. Risikominimierung

- Der Kondensatorhersteller kann nicht alle Belastungsmöglichkeiten eines Starkstromkondensators voraussehen und in der Konstruktion berücksichtigen. Hier trägt der Anwender entscheidende Mitverantwortung. Schon deshalb sollten bei der Kondensatorauswahl Sicherheit und Qualität an erster Stelle stehen. Deshalb ist dringend zu empfehlen, Kondensatoren mit entsprechenden Internen Schutzeinrichtungen einzusetzen.
- Kondensatoren sind im Vorfeld der Anwendung auf ihre Eignung für den Anwendungsfall zu prüfen, dabei sind alle Einflüsse (Parameter) zu berücksichtigen. Die bedenkenlose Übernahme in eine Anwendung kann schwerwiegende Folgen haben.
- Besonders bei sensiblen Anwendungen sollten die internen Schutzeinrichtungen der Kondensatoren vom Anwender durch geeignete externe Schutzmaßnahmen ergänzt werden. Externe Schutzmaßnahmen sind beim Einsatz von Kondensatoren ohne interne Schutzeinrichtungen sogar zwingend erforderlich.
- 4. Grundsätzlich ist beim Einsatz von Leistungskondensatoren durch geeignete Maßnahmen dafür zu sorgen, dass sowohl im Betriebs-, als auch im Schadensfall keine Gefahren für Menschen, Tiere und Sachen entstehen. Dies gilt für Kondensatoren ohne und mit Schutzeinrichtungen.
- 5. Die im ZVEI organisierten Starkstromkondensatorhersteller sind gern bereit, den Anwender schon im Vorfeld des Einsatzes zu beraten und konkrete Anwendungsemplehlungen zu geben.

Stand: Oktober 2007

Verantwortlich für den Inhalt

ZVEI - Zentralverband Elektrotechnik- und Elektronikindustrie e.V.

Fachverband Starkstromkondensatoren

Stresemannaliee 19 60596 Frankfurt am Main Fon: 069 8302 -440 Fax: 069 6302 - 413

Mail: stein@zvei.org

VDE Prüf- und Zertifizierungsinstitut

VDE (CTIENC DES ELECTROTEONIA ELECTRONIC SPERMINE ENTRECEMENT)

ZERTIFIKAT

für die überwachte Ferfigungsetätle for the approved Place of Manufacture

ELECTRONICON Kondersatoren GrittiH Keplerstrafie 2 07549 Gera

De Übersachung arfoligt nach Bert. Hamspotsierten Werbsimpetitione. Varfatmen - Anfenderungen oDIG 821 tris 924). Die Anfordeningen wurden arfolie.

FruitAl-Katagorie

Landungskonderlador
Lauchtschlangen Parallehondersator
Lauchtschlangen Retherbondersator
Mothe Baltinderlondersator

The survivience is performed exampling to the Harmonized Factory inspection Procedure - Requirements (CIS 921 to 924). The requirements have been fulfilled.

Product Georgesy:

Private cognition of the cognition of the cognition of the cognition of the common cognition of the cognition of the

Datum der leb Date of lee

2005

VDE Polit und Zerthamungsmattut Greek Ter Wertscoperior und Kontonsphobereichung

ged Lik Thomas bro.

Offerman, 2008-07-06

Disser Dollitis in gifty, the Dissound we nick don Falson sees VIII decrease Diss VIII that was both

to Debrus a real report of the contract of the property of the contract of the

CERTIFICATE TIC

for the management system according to ISO 9001:2008

The proof of the conforming application with the regulation was furnished and in accordance with certification procedure it will be certified for the company

ELECTRONICON

ELECTRONICON Kondensatoren GmbH

Keplerstraße 2 07549 Gera Germany

Scope

Development, production and sale of DC/AC capacitors for high, medium and low voltage, reactors, controllers, capacitor modules, accessories and banks, metal coating of film

Certificate Registration No.: TIC 15 100 9534

Valid until 2012-05-31

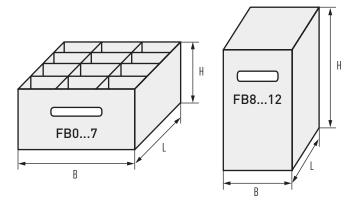
Audit Report No.: \$550 206V 30

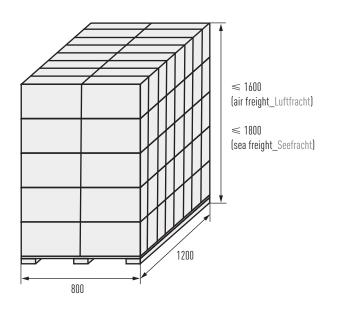
Indian contribution 1999.

The perfluence was contacted in accordance with the TIC sutting and confluence procedures and is subject to require surveillance pushes.

A Det Lessel Tür Prüzingen e.V. Continuen nich personne

Janes 2009-07-22





box type Karton Typ	dimensions Abmessung L×B×H (mm)	boxes/pallet Kartons/Palette
FB0	383 × 203 × 193	80
FB1	383 × 203 × 173	90
FB2	383 × 203 × 148	80
FB3	383 × 203 × 133	100
FB4	383 × 203 × 113	120
FB6	383 × 203 × 93	130
FB7	383 × 203 × 208	80
FB8	393 × 153 × 270	80
FB9	393 × 153 × 320	70
FB10	393 × 153 × 370	56
FB11	393 × 153 × 404	56
FB12	393 × 153 × 338	70
FB13	393 × 153 × 416	60
FB21	$358 \times 338 \times 533$	18
FB22	$363 \times 363 \times 763$	12

Box Karton Carton, sealed with paper sticker tape Karton, verschlossen mit Papierklebeband

Pallet Palette Standard Euro-Pallet (fumigated if required), wrapped in PP-foil Standard Euro-Paletten, mit PP-Stretch-Folie umhüllt (bei Bedarf vorbehandelt gegen Schädlinge)

${\color{red} \textbf{Temperature}_\textbf{Temperatur}}$

Celsius	Fahrenheit
1°	$PF = 1^{\circ}C \times \frac{9}{5} + 32$
-50	-58
-45	-49
-40	-40
-30	-22
-25	-13
-20	-4
-10	14
0	32
10	50
20	68
30	86
40	104
45	113
50	122
55	131
60	140
65	149
70	158
80	176
85	185
90	194
100	212

Weight_Masse

Gramm	Ounce
	1 oz = 28.4 g
5	0.18
10	0.35
20	0.71
30	1.06
40	1.41
50	1.76
60	2.12
70	2.47
80	2.82
90	3.17
100	3.53

Kilogramm	lbs
	1 kg = 2.2 lbs
0.5	1.1
1	2.2
2	4.41
3	6.61
4	8.82
5	11.02
6	13.23
7	15.43
8	17.64
9	19.84
10	22.05

 ${\bf Torque_Drehmoment}$

Newton-Meter	Pound-Force Inches			
1 Nm = 8.8 pfi				
0.5	4			
1	8			
1.5	13			
2	17			
2.5	22			
3	26			
3.5	30			
4	35			
4.5	39			
5	44			
6	53			
7	61			
7.5	66			
8	70			
8.5	75			
9	79			
9.5	84			
10	88			

Length_Länge

mm	i	inch	
1 inch = 25.4 mm			
6	2/8	0.24	
8	3/8	0.31	
10	3/8	0.39	
13	4/8	0.51	
14	4/8	0.55	
16	5/8	0.63	
17.5	6/8	0.69	
20	3/4	0.79	
25	1	0.98	
30	1 1/8	1.18	
32	1 2/8	1.26	
35	1 3/8	1.38	
37	1 4/8	1.46	
40	1 5/8	1.57	
42	1 5/8	1.65	
42.5	1 5/8	1.67	
45	1 6/8	1.77	
48	1 7/8	1.89	
49	1 7/8	1.93	
50	2	1.97	
51	2	2.01	
55	2 1/8	2.17	
58	2 2/8	2.28	
60	2 3/8	2.36	
62	2 4/8	2.44	
64	2 4/8	2.52	
67	2 5/8	2.64	
70	2 3/4	2.76	
75	3	2.95	
76	3	2.99	
79	3	3.11	
80	3 1/8	3.15	
81	3 2/8	3.19	
85	3 3/8	3.35	

mm	inch			
1 inch = 25.4 mm				
89	3 4/8	3.5		
90	3 1/2	3.54		
93	3 1/2	3.66		
95	3 1/2	3.74		
98	4	3.86		
100	3 7/8	3.94		
101	4	3.98		
105	4 1/8	4.13		
109	4 2/8	4.29		
110	4 3/8	4.33		
116	4 5/8	4.57		
120	4 3/4	4.72		
122	4 3/4	4.8		
125	5	4.92		
130	5 1/8	5.12		
135	5 3/8	5.31		
136	5 3/8	5.35		
140	5 1/2	5.51		
141	5 1/2	5.55		
142	5 1/2	5.59		
150	5 7/8	5.91		
151	6	5.94		
153	6	6.02		
160	6 1/4	6.3		
164	6 2/4	6.46		
165	6 2/4	6.5		
170	6 3/4	6.69		
176	7	6.93		
180	7 1/8	7.09		
185	7 2/8	7.28		
190	7 1/2	7.48		
200	7 7/8	7.87		
205	8 1/8	8.07		
210	8 1/4	8.27		

mm		inch		
1 inch = 25.4 mm				
220	8 5/8	8.66		
230	9	9.06		
240	9 1/2	9.45		
245	9 1/2	9.65		
250	9 7/8	9.84		
252	9 7/8	9.92		
260	10 1/4	10.24		
270	10 5/8	10.63		
280	11	11.02		
290	11 3/8	11.42		
295	11 5/8	11.61		
300	11 3/4	11.81		
310	12 1/4	12.2		
314	12 1/4	12.36		
320	12 5/8	12.6		
324	12 6/8	12.76		
330	13	12.99		
340	13 3/8	13.39		
345	13 5/8	13.58		
350	13 3/4	13.78		
362	14 1/4	14.25		
380	15	14.96		
390	15 1/4	15.35		
393	15 2/4	15.47		
395	15 2/4	15.55		